A.D.M COLLEGE FOR WOMEN (AUTONOMOUS), NAGAPATTINAM-611 001

(Nationally Re-accredited with 'A' Grade by NAAC- 3rd Cycle)

PG DEPARTMENT OF COMPUTER SCIENCE

M.Sc. COMPUTER SCIENCE

SYLLABUS (2021-2023 BATCH)

PG DEPARTMENT OF COMPUTER SCIENCE M.Sc., COMPUTER SCIENCE COURSE STRUCTURE UNDER CBCS (2021-2023 Batch)

OBE ELEMENTS

Programme Educational Objectives (PEO):

PEO 1	To provide advanced and in-depth knowledge of computer science and its applications
PEO 2	To prepare Post Graduates who will achieve peer-recognition; as an individual or in a
	through demonstration of good analytical, design and implementation skills.
PEO 3	To enable students pursue a professional career in Information and Communication Technology related industry, business and research
PEO 4	To impact professional knowledge and practical skills to the students.
PEO 5	To enable students to take up challenging jobs.

Programme Outcomes (PO):

On completion of the course the learner will be able

PO-1	Attain a sound understanding of the general principles of Computer Science.
PO-2	Obtain exposure to innovative, research-based topics within computing
PO-3	Acquire leadership qualities, and good communication, teamwork, social, and professional
	skills.
PO-4	Understand the impact of computer science solutions in a global and societal context
PO-5	Apply knowledge of computing to produce effective designs and solutions for specific
	problems

Programme Specific Outcomes (PSO):

On completion of the course the learner will be able

PSO - 1	Acquire academic excellence with an aptitude for higher studies and research.
PSO-2	Attain knowledge to develop and apply new computer technologies.
PSO - 3	Contribute to the local society and the global community related to Computer Science.
PSO-4	Identify, formulate, and solve computer science problems.
PSO-5	Practice high standard of professional ethics.

M.Sc., COMPUTER SCIENCE 2021 – 2023 Batch

STRUCTURE OF THE PROGRAMME

Course	No. of Papers	Hours	Credit
Core Course (CC)	15	68	54
Elective Course (EC)	5	22	18
Self-Paced Learning (SPL)	1	-	2
Extra Credit Course (ECC)	1	-	2
Internship / Field Work	-	-	2
Project	1	30	16
Total	23	120	90 (6)

M.Sc. COMPUTER SCIENCE (2021-2023) BATCH SCHEME OF THE PROGRAMME

CEM	COUDCE	COUNCE	INST	CDEDIT	EXAM	MARKS		TOTAL
SEM	COURSE	COURSE	HOURS	CREDIT	HOURS	CIA	SE	MARKS
	PGXA	Core Course -I (CC) Database and NoSQL	4	4	3	25	75	100
	PGXB	Core Course- II (CC) Design and Analysis of Algorithms	5	4	3	25	75	100
	PGXC	Core Course –III(CC) Modern Operating Systems	4	4	3	25	75	100
	PGXD	Core Course –IV (CC) Advanced JavaProgramming	5	4	3	25	75	100
Ι	PGXEY	Core Course-V (CC) Mongodb Lab	4	3	3	40	60	100
	PGXFY	Core Course-VI (CC) Advanced Java ProgrammingLab	4	4	3	40	60	100
	PGXE1	Core Elective - I (EC) Any one from the list	4	4	3	25	75	100
		Total	30	27	*	*	*	700
	PGXG	Core Course –VII (CC) Data Science Using Python	5	3	3	25	75	100
	PGXH	Core Course-VIII (CC) Big Data Analytics	4	3	3	25	75	100
	PGXI	Core Course- IX (CC) Distributed Technologies	5	3	3	25	75	100
	PGXJY	Core Course- X (CC) Distributed Technologies Lab	4	3	3	40	60	100
II	PGXKY	Core Course- XI (CC) Advanced Python Lab	4	3	3	40	60	100
	PGXL	Self-Paced Learning (SPL) Virtualization & Cloud Computing	-	2	3	25	75	100
	PGXE2	Core Elective - II (EC) Any one from the list	4	3	3	25	75	100
	PGXE3	Core Elective -III (EC) Any one from the list	4	3	3	25	75	100
		Extra Credit Course (ECC) MOOC Online	-	2	-	-	-	Grade
		Total	30	21(4)	*	*	*	800

			INST		EXAM	MARKS		
SEM	COURSE COURSE		HOURS	CREDIT	HOURS	C.I.A	E.E	TOTAL
	PGXM	Core Course - XII(CC)						
		Data Mining and Data Warehousing	5	4	3	25	75	100
	PGXN	Core Course - XIII(CC)	_		_			
		Data Mining Lab	5	4	3	40	60	100
	PGXO	Core Course– XIV (CC)		4	3	25		
ш		Machine Learning and R	5				75	100
111		Programming						
	PGXPY	Core Course- XV(CC)	5	4	3	40	60	100
		Embedded Lab	3					
	PGXF4	Core Elective- IV(EC)		4			75	100
		Any one from the list	5		3	25		
	PGXE5	Core Elective– V(EC)						
		Any one from the list	5	4	3	25	75	100
	Internship / Field Work (30 Hours)		-	2	-	-	-	Grade
		Total	30	24(2)	*	*	*	600
	PGXOP	Core Course -XVI(CC)			_			
IV		Project	30	16	3	25	75	100
		Total	30	16	*	*	*	100
		Grand Total	120	90 (6)				2200

List of Elective Subjects:

Elective I	Elective II		
1. Artificial Intelligence 2. High Performance Computing	1. Ethical Hacking 2. Cryptography & Network Security		
3. Parallel and Distributed Computing	3. Adhoc and Sensor Networks		
Elective III	Elective IV		
1. Compiler Design	1. Embedded System		
2. MANET	2. Security in Computing		
3. Software Project Management	3. Grid Computing		
Elective	V		
1. Internet of2. Human Comput3. Web Set	of Things Iter Interaction ervices		

M. Sc. – ADD ON COURSE

Year	Sem.	Title of the Paper	Credit
Ι	II	Self-Paced Learning	2
Ι	II	Swayam / MOOC	2
III	IV	Internship Training	2

Semester-I / Core Course-I (CC)	DATABASE AND NOSQL	Course Code : PGXA
Instruction Hours: 4	Credits: 4	Exam Hours: 3
Internal Marks : 25	External Marks: 75	Total Marks: 100

Knowledge	K1-Acquire / Remember	
Level	K2-Understanding	
	K3-Apply	
	K4-Analyze	
	K5-Evaluate	
	K6-Create	
Course	• Understand the concept of database and data warehouses.	
Objectives	• Knowledge on MongoDB query language.	
	• Ability to comprehend the principles of NoSQL.	
	• Understand the difference of NoSQL key value database and Document d	latabase
	• Know the concept of Column database	
	• Understand the data modelling techniques	
UNIT	CONTENT	HOURS
Ι	Database Revolutions- System Architecture- Relational Database- Database	12
	Design Data Storage- Transaction Management- Data warehouse and Data	
	Mining- Information Retrieval.	
II	Introduction to MongoDB key features- Core Server tools- MongoDB	12
	through the JavaScript's Shell- Creating and Querying through Indexes-	
	Document-Oriented, principles of schema design- Constructing queries on	
	Databases- collections and Documents- MongoDBQuery Language.	
III	DATABASE : RDBMS VS NOSQL - Data Management with Distributed	12
	Databases- ACID and BASE- Four types of NOSQL Databases. KEY	
	VALUE DATABASES: Introduction to key value databases- Essential	
	Features of Key value Databases- Key-Value Database Data Modeling	
	Terms- Key-Value Architecture Terms- Key-Value Implementation Terms.	
IV	DOCUMENT DATABASE: Introduction to Document Database: Document-	12

	managing Multiple Document in collection-Basic Operations on document									
	Normalization Denormalization and the Sourch for proper Balance									
	Normalization, Denormalization, and the Search for proper Balance.									
V	COLUMN DATABASE : Introduction to Column Family Database: Utilizing	12								
	Dynamic Control over Column- Indexing by row, column name and Time									
	Stamp- Controlling Location of data- Reading and Writing Atomic Rows-									
	Maintaining rows in Sorted Order- Column Family Database Features-									
	Column family Database Versus Relational Database- Basic Components of									
	Column Family database.									
VI	Contemporary Issues: Expert lectures, online seminars – webinars	-								

Text Book

- 1. Abraham Silberschatz, Henry F. Korth, S. Sudarshan, Database System Concepts, SixthEdition, McGrawHill.
- 2. Dan Sullivan, NoSQL for Mere Mortals, Addison-Wesley, 2015.

Reference Books

Kyle Banker, Piter Bakkum, Shaun Verch, MongoDB in Action, Dream tech Press.

Web Resources:

1. https://www.guru99.com/what-is

mongodb.html#:~:text=MongoDB%20is%20a%20document%2Doriented,unit%20of%20d at a%20in%20MongoDB.

- 2. https://www.geeksforgeeks.org/mongodb-an-introduction/
- 3. https://intellipaat.com/blog/what-is-mongodb/
- 4. https://www.tutorialspoint.com/mongodb/index.html

On completion of the Course, Students should be able to do

CO1: Define, compare and use the four types of NoSQL Databases (Documentoriented, KeyValue Pairs, Column-oriented and Graph).

CO2: Distinguish the different types of NoSQL databases.

CO3: Explain the detailed architecture, define objects, load data, query data and performance tune Document-oriented NoSQL databases.

CO4: Demonstrate an understanding of the detailed architecture, define objects, load

data, query data and performance tune Column-oriented NoSQL databases.

CO5: Evaluate NoSQL database development tools and programming languages.

Mapping of COs with POs & PSOs:

CO/PO	РО						PSO			
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	М	S	S	S	S	S	S	S
CO4	S	S	М	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated M - Moderately Correlated W-Weakly Correlated

Semester-I / Core Course- II (CC)	DESIGN AND ANALYSIS OF ALGORITHMS	Course Code :PGXB
Instruction Hours: 5	Credits: 4	Exam Hours: 3
Internal Marks : 25	External Marks:75	Total Marks: 100

Knowledge	K1-Acquire / Remember	
Level	K2-Understanding	
	K3-Apply	
	K4-Analyze	
	K5-Evaluate	
	K6-Create	
Course	• Define the basic concepts of algorithms and analyze the p	erformance of
Objectives	algorithms.	
	• Discuss various algorithm design techniques for developing algorith	ıms.
	• Discuss various searching, sorting and graph traversal algorithms.	
	• Understand NP completeness and identify different NP complete pro	oblems.
	Discuss various advanced topics on algorithms	
UNIT	CONTENT	HOURS
Ι	Algorithm Definition – Algorithm Specification – Performance	15
	Analysis. Elementary Data Structures: Stacks and Queues – Trees –	
	Dictionaries – Priority Queues – Sets and Disjoint Set Union –	
	Graphs.	
II	The General Method – Defective Chessboard – Binary	15
	Search – Finding The Maximum And Minimum – Merge Sort –	
	Origh Cost Calenting Streege 2. Matrix Malticlinetics	
	Quick Sort – Selection - Strassen's Matrix Multiplication.	
III	General Method - Container Loading - Knapsack Problem - Tree	15
	Vertex Splitting – Job Sequencing With Deadlines - Minimum Cost	
	Consider Trans. Optimal Standard Op Trans. Optimal Mana	
	Spanning Trees - Optimal Storage On Tapes – Optimal Merge	
	Patterns - Single Source Shortest Paths.	
IV	The General Method - Multistage Graphs All-Pairs Shortest	15
	The Ocherar Wiethou – Withistage Oraphs – An-rails Shortest	
	Paths – Single-Source Shortest Paths - Optimal Binary Search Trees -	

	String Editing - 0/1 Knapsack - Reliability Design - The Traveling	
	Salesperson Problem - Flow Shop Scheduling. Basic Traversal and	
	Search Techniques: Techniques for Binary Trees – Techniques for	
	Graphs – Connected Components and Spanning Trees – Biconnected	
	Components and DFS.	
V	The General Method – The 8-Queens Problem – Sum of Subsets -	15
	Graph Coloring – Hamiltonian Cycles – Knapsack Problem Branch	
	and Bound: The Method - 0/1 Knapsack Problem.	
VI	Contemporary Issues: Expert lectures, online seminars – webinars	-

Text Books:

Ellis Horowitz, Satraj Sahni and Sanguthevar Rajasekaran, Fundamentals of Computer Algorithms, Universities Press, Second Edition, Reprint 2009.

Reference Books

- 1. Data Structures Using C Langsam, Augenstien, Tenenbaum, PHI
- 2. Data structures and Algorithms, V.Aho, Hopcropft, Ullman, LPE
- 3. Introduction to design and Analysis of Algorithms S.E. Goodman, ST. Hedetniem- TMH

Web-Resources:

https://www.iare.ac.in/sites/default/files/lecture_notes/DAA_LECTURE_NOTES_0.pdf http://dmice.ac.in/wp-content/uploads/2017/05/DAA.pdf

On completion of the Course, Students should be able to do

CO1: Define, compare and use the four types of NoSQL Databases (Document-oriented, Key Value Pairs, Column-oriented and Graph).

CO2: Distinguish the different types of NoSQL databases.

CO3: Explain the detailed architecture, define objects, load data, query data and performance tuneDocument-oriented NoSQL databases.

CO4: Demonstrate an understanding of the detailed architecture, define objects, load data, querydata and performance tune Column-oriented NoSQL databases.

CO5: Evaluate NoSQL database development tools and programming languages.

CO/PO	РО							PSO		
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	М	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Mapping of COs with POs & PSOs:

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-I /	MODERN OPERATING SYSTEMS	Course Code :PGXC
Core Course- III (CC)		
Instruction Hours: 4	Credits: 4	Exam Hours: 3
Internal Marks :25	External Marks:75	Total Marks: 100

Knowledge Level	K1-Acquire / Remember K2-Understanding K3-Apply K4-Analyze K5-Evaluate	
Course Objectives	 K6-Create To acquire knowledge in Distributed operating. To know the components of distributed resource management. To know the components and management aspects of Real time, Mobile 	operating
	 systems. Use disk management and disk scheduling algorithms for better utilization of externalmemory. Recognize file system interface, protection and security mechanisms. 	1
UNIT	CONTENT	HOURS
Ι	What is operating system? - The Operating System as a Extended Machine- The Operating System as a Resource Manager-History of Operating systems-The Operating system Zoo-Mainframe Operating systems-Server Operating System-Personal Computer Operating systems- Computer Hardware Review-Processor-I/O Devices-System calls-Operating System Structure-Client And Server Model-Process-Threads-Scheduling.	12
Π	Basic Memory Management-Mono programming Without Swapping Or Paging-Modeling Multiprogramming-Swapping-Memory Management with Bitmaps-Linked Lists-Virtual Memory-Paging-Page Table-Translation Look side Buffers-Design Issues for Paging System- Local Versus Global Allocation Policies-Load Control- Segmentation-The Intel Pentium.	12
III	Files-File Types-File Attributes-File Operation-Memory Mapped	12

	Files-Directories-Single Level Directory Systems-Two Level Directory	
	Systems-Hierarchical Directory Systems-File System Implementation.	
	Input/output: Principles of I/O Hardware-Device Controllers-	
	Memory Mapped I/O- Principles of I/O Software-Goals Of The Softwere -	
	Programmed I/O-Interrupt I/O-I/O Using DMA.	
IV	Introduction to Multimedia – Multimedia Files- Multimedia Process	12
	Scheduling- Scheduling Homogeneous Processes-General Real Time	
	Scheduling-Earliest Deadline First Scheduling. Dead Lock: Introduction to	
	Dead Locks-Conditions For Deadlock- Deadlock Modeling-The Ostrich	
	Algorithm-Dead Lock Detection And Recovery-Dead Lock Avoidance-	
	Resource Trajectories-Safe And Unsafe States- The Banker's Algorithm for	
	Single Resource- The Banker's Algorithm for Multiple Resource-Deadlock	
	Prevention.	
V	Distributed System-Network Hardware-Network Services and	12
	Protocols-File System Based Middleware-Shared Object Based Middleware.	
	Security: The Security Environment-Threads-Intruders-Accidental	
	Data Loss- Basics of Cryptography-Secret key. Cryptography-Digital	
	Structure-User Authentication-Countermeasures- Attacks From Inside The	
	System-Trojan Horses-Login Spoofing-Generic Security Attacks- Attacks	
	From Outside The System-Virus Damage Scenarios-Mobile Code-Java	
	Security.	
VI	Contemporary Issues: Expert lectures, online seminars – webinars	-

Text Book

Andrew S. Tannenbaum and Herbert Bos, "Modern Operating Systems", Fourth Edition, Prentice Hall, 2014.

Reference Books

- 1. Jonathan Levin, "Mac OS X and iOS Internals: To the Apple"s Core", John Wiley & Sons, 2012.
- 2. Mike Ebbers, John Kettner, Wayne O"Brien, Bill Ogden, "Introduction to the New Mainframe: z/OS Basics", Third Edition, International Business Machines Corporation, 2011.
- 3. Abraham Silberschatz, Peter B. Galvin, Greg Gagne, "Operating System Concepts", Wiley, Eighth edition, 2008.

Web Resources

http://materias.fi.uba.ar/7508/MOS4/Operating.Systems.4th.Edi.pdf https://acadndtechy.files.wordpress.com/2015/01/real-time-systems-rajib-mall-pearsoneducation-india-2007.pdf

Course Outcomes:

On completion of the Course, Students should be able to do

CO1: To understand the main components of an OS & their functions.

CO2: To study the process management and scheduling.

CO3: To understand various issues in Inter Process Communication (IPC) and the role of OS in IPC.

CO4: To understand the concepts and implementation Memory management policies and virtual memory.

CO5: To study the need for special purpose operating system with the advent of new emerging technologies.

Mapping of COs	with	POs	&	PSOs:
----------------	------	-----	---	--------------

CO/PO	РО							PSO		
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	S	S	S	S	S	S	S
CO2	S	S	М	S	S	S	S	S	S	S
CO3	S	S	S	М	S	S	S	S	S	S
CO4	S	S	М	М	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-I /	ADVANCED JAVA PROGRAMMING	Course Code : PGXD
Core Course-IV(CC)		
Instruction Hours: 5	Credits: 4	Exam Hours: 3
Internal Marks : 25	External Marks:75	Total Marks: 100

Knowledge	K1-Acquire / Remember	
Level	K2-Understanding	
	K3-Apply	
	K4-Analyze	
	K5-Evaluate	
<u> </u>	K6-Create	
Course	• To learn why Java is useful for the design of desktop and web application	ations.
Objectives	• To learn how to implement object-oriented designs with Java.	
	• To identify Java language components and how they work together in applications.	1
	• To design and program stand-alone Java applications.	
	• To understand how to use Java APIs for program development	
UNIT	CONTENT	HOURS
Ι	J2EE OVERVIEW: J2EE and J2SE- The Birth of J2EE -	15
	J2EE. J2EE Multitier Architecture: The Tier - J2EE Multi-Tier	
	Architecture - Client Tier Implementation- Classification of Clients -	
	Web Tier Implementation. J2EE Best Practices: The Enterprise	
	Application-Session Management- Presentation and Processing-	
	Model View Controller.	
II	JAVA REMOTE METHOD INVOCATION : RMI Concept-	15
	Remote Interface- Passing Objects - The RMI Process - Sever side -	
	Client side. JAVA Servlets: Java Servlets and Common Gateway	
	Interface Programming- Benefits of using a Java Servlet - A simple	
	Java Servlet - Anatomy of Java Servlet - Deployment Descriptor -	
	Reading Data from a Client - Working with Cookies - Tracking	
	Sessions.	

III	JSP - JSP Tags- Variables and Objects- Methods -Control	15
	Statements- Loops -Tomcat- Request String -User Session - Cookies -	
	Session Objects. EJB: Enterprise Java Beans-The EJB container- EJB	
	Classes- EJB Interfaces- Referencing EJB- Relationship Elements -	
	Session Java Bean –Stateless vs. Stateful - Creating a Session Java	
	Bean-Entity Java Bean -The JAR file.	
IV	INTRODUCTION TO SPRING Simplifying Java	15
	Development – Containing Beans – Surveying Bean Landscape.	
	Spring Configuration: Wiring Beans – With Java – With XML.	
V	SPRING ON THE WEB Spring MVC – Simple Controller –	15
	Request Input – Processing Forms. WEB VIEWS:Creating JSP Web	
	Views – Defining Layout– JSP Libraries	
VI	Contemporary Issues: Expert lectures, online seminars -	-
	webinars	

Text Books:

- Jim Keogh," The Complete Reference J2EE ", Tata McGraw Hill, New Delhi, 2012.Units: I, II, III
- 2. Craig Walls, "Spring in Action" 4 Ed, Manning Publication, New York, 2015

Reference Books:

- 1. McGovern," J2EE 1.4 Bible", Wiley, Chennai, India, 2007.
- 2. Nicholas S. Williams,"Professional Java for Web Applications: Featuring Web Sockets, Spring Framework, JPA Hibernate and Spring Security

Web-Resources:

https://web.iiit.ac.in/~nagarjuna.psug08/J2ME%20-%20The%20Complete%20Reference.pdf https://doc.lagout.org/programmation/Spring%20Boot%20in%20Action.pdf https://livebook.manning.com/#!/book/spring-in-action-fifth-edition/chapter-2/23

On completion of the Course, Students should be able to do

CO1: Understand the fundamental concepts of the J2EE Technologies

CO2: Comprehend the principles of J2EE programming.

CO3: Learn the communication of client and server in the programming paradigm.

CO4: Understand the concept of JSP and EJB

CO5:Ability to connect Spring with XML and Develop programming skills in Spring using web views.

Mapping of COs with POs & PSOs:

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-I /	MONGODB LAB	Course Code: PGXEY
Core Course-V(CC)		
Instruction Hours: 4	Credits: 3	Exam Hours: 3
Internal Marks : 40	External Marks:60	Total Marks: 100

Course Objectives:

- Create a simple Structured query program
- Design database using MongoDB
- Apply distributed techniques for querying documents and modification
- Ability to process and design forms to upload the JSON files
- Test and debug regular expression and indexing
- Design and Manipulate forms to provide user authentication

List of Practical's

- 1. Simple SQL Programs
- 2. MongoDB Create & Insert Database
- 3. MongoDB Query Document
- 4. MongoDB Query Modifications
- 5. JSON file program
- 6. Search Text
- 7. Regular Expression
- 8. Operation on Document
- 9. MongoDB Replication
- 10. MongoDB Indexing

On completion of the Course, Students should be able to do

CO1: Configure persistence with Mongodb
CO2: Connect to Mongodb
CO3: Create a Database
CO4: Create our Collections
CO5: Create relations between documents and Use Query in Mongodb

Mapping of COs with POs & PSOs:

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-I / Core Course-VI(CC)	ADVANCED JAVA PROGRAMMING LAB	Course Code: PGXFY
Instruction Hours: 4	Credits: 4	Exam Hours: 3
Internal Marks : 40	External Marks:60	Total Marks: 100

Course Objectives:

- To understand how to design, implement, test, debug, and document programs that use basic data types and computation, simple I/O, conditional and control structures, string handling and functions.
- Using Graphics, Animations and Multithreading for designing Simulation and Game based applications.
- Design and develop Web applications
- Designing Enterprise based applications by encapsulating an application's business logic.
- Designing applications using pre-built frameworks.

List of Practical's

- 1. Remote Method Invocation
- 2. Servlet
- 3. Servlet with JDBC
- 4. JSP
- 5. JSP Cookies
- 6. JSP with JDBC
- 7. EJB: Session Bean
- 8. Simple Spring application
- 9. Spring based forms
- 10. JSP Web Views

On completion of the Course, Students should be able to do

CO1: Demonstrate programming language concepts RMI, Servlet

CO2: Write, debug, and document well-structured J2EE applications

CO3: Demonstrate the behavior of JSP and Cookies

CO4: Implement JSP connection with JDBC

CO5: Develop programming aspect with spring based forms, apply the concept of JSP using web views

Mapping of COs with POs & PSOs

COMO	РО						PSO				
CO/PO	1	2	3	4	5	1	2	3	4	5	
CO1	S	S	S	S	S	S	S	S	S	S	
CO2	S	S	S	S	S	S	S	S	S	S	
CO3	S	S	S	S	S	S	S	S	S	S	
CO4	S	S	S	S	S	S	S	S	S	S	
CO5	S	S	S	S	S	S	S	S	S	S	

- **S** Strongly Correlated
- **M** Moderately Correlated

W-Weakly Correlated

Semester-II / Core Course-VII(CC)	DATA SCIENCE USING PYTHON	Course Code:PGXG
Instruction Hours: 5	Credits: 3	Exam Hours: 3
Internal Marks : 25	External Marks:75	Total Marks: 100

Knowledge	K1-Acquire / Remember	
Level	K2-Understanding	
	K3-Apply	
	K4-Analyze	
	K5-Evaluate	
	K6-Create	
Course	• Explore Python language fundamentals, including basic syntax, vari	ables, and
Objectives	types	
	Create and manipulate regular Python lists	
	Use functions and import packages	
	Build Numpy arrays, and perform interesting calculations	
	Create and customize plots on real data	
	• Supercharge your scripts with control flow, and get to know the Pa	ndas Data
	Frame	
UNIT	CONTENT	HOURS
Ι	WHY PYTHON FOR DATA ANALYSIS? Essential Python	15
	Libraries – Installation and setup python basics: The python	
	Interpreter- Ipython Basics- Data Structure and Sequences: Tuple – list	
II	NUMPY BASICS: Arrays and Vectorized Computation -The	15
	NumPy ndarray: A Multidimensional Array Object - Universal	
	Functions: Fast Element-wise Array Functions - File Input and Output	
	with Arrays - Linear Algebra - Random Number Generation	
III	GETTING STARTED WITH PANDAS :Introduction to pandas	15
	Data Structures - Essential Functionality - Summarizing and	
	Computing Descriptive Statistics - Handling Missing Data -	
	Hierarchical Indexing - Other pandasTopics.	

IV	DATA LOADING, STORAGE, AND FILE FORMATS:	15
	Reading and Writing Data in Text Format - Binary Data Formats -	
	Interacting with HTML and Web APIs - Interacting with Databases -	
	Data Wrangling: Clean, Transform, Merge, Reshape.	
V	PLOTTING AND VISUALIZATION: A Brief matplotlib API	15
	Primer - Plotting Functions in pandas -Python Visualization Tool	
	Ecosystem - Time Series.	
VI	Contemporary Issues: Expert lectures, online seminars –	-
	webinars.	

Text Book:

- 1. Wes McKinney, "Python for Data Analysis", Published by O'Reilly Media, 2012, ISBN: 978-1-449-31979-3
- 2. Jake Vander Plas, "Python Data Science Handbook", O'Reilly Media Publishers, 2016.

Reference Books:

- Allen B. Downey, "Think Python: How to Think Like a ComputerScientist", 2nd edition, Updated for Python3, Shroff/O'ReillyPublishers, 2016
- 2. (http://greenteapress.com/wp/thinkpython/)
- 3. Guido van Rossum and Fred L. Drake Jr, "An Introduction to Python Revised and Updated for Python 3.2", Network Theory Ltd., 2011.http://www.network- theory.co.uk/docs/pytut/)

Web-Resources:

https://www.tutorialspoint.com/python/python_data_science

http://astronomi.erciyes.edu.tr/wpcontent/uploads/astronom/pdf/OReilly%20Python%20for%20

Data%20Analysis.pdf

https://tanthiamhuat.files.wordpress.com/2018/04/pythondatasciencehandbook.pdf

On completion of the Course, Students should be able to do

CO1: Understanding the basic concepts of Python

CO2: Preparing and pre-processing data

CO3: Visualizing the results of analytics effectively

CO4: Basic understanding of NumPy and Pandas

CO5: Ability to use conditional loops and list by python and Learn the

Visualization through Matplotlib

Mapping of COs with POs & PSOs:

CO/DO		РО					PSO					
CO/PO	1	2	3	4	5	1	2	3	4	5		
CO1	S	S	S	S	S	S	S	S	S	S		
CO2	S	S	S	S	S	S	S	S	S	S		
CO3	S	S	S	S	S	S	S	S	S	S		
CO4	S	S	S	S	S	S	S	S	S	S		
CO5	S	S	S	S	S	S	S	S	S	S		

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-II /	BIG DATA ANALYTICS	Course Code: PGXH
Core Course-VIII(CC)		
Instruction Hours: 4	Credits: 3	Exam Hours: 3
Internal Marks : 25	External Marks:75	Total Marks: 100

Knowledge	K1-Acquire / Remember	
Level	K2-Understanding	
	K3-Apply	
	K4-Analyze	
	K5-Evaluate	
	K6-Create	
Course	• Understand the Big Data Platform and its Use cases	
Objectives		
	• Provide an overview of Apache Hadoop	
	• Provide HDFS Concepts and Interfacing with HDFS	
	 Understand Man Reduce Jobs 	
	• Onderstand Map Reduce Jobs	
	• Provide hands on Hodoop Eco System	
UNIT	CONTENT	HOURS
I	FUNDAMENTALS OF BIG DATA. The Evolution of	15
-	i citalitati integi citalitati integi all'anti	15
	Data Management – Understanding the waves of Managing Data –	15
	Data Management – Understanding the waves of Managing Data – Defining Big Data – Building a Successful Big Data Management	15
	Data Management – Understanding the waves of Managing Data – Defining Big Data – Building a Successful Big Data Management Architecture – Examining Big Data Types : Defining Structured	15
	Data Management – Understanding the waves of Managing Data – Defining Big Data – Building a Successful Big Data Management Architecture – Examining Big Data Types : Defining Structured Data – Defining Unstructured Data – Looking at Real Time and	15
	Data Management – Understanding the waves of Managing Data – Defining Big Data – Building a Successful Big Data Management Architecture – Examining Big Data Types : Defining Structured Data – Defining Unstructured Data – Looking at Real Time and Non Real Time Requirements - Digging into Big Data Technology	15
	Data Management – Understanding the waves of Managing Data – Defining Big Data – Building a Successful Big Data Management Architecture – Examining Big Data Types : Defining Structured Data – Defining Unstructured Data – Looking at Real Time and Non Real Time Requirements - Digging into Big Data Technology Components : Exploring the Big Data Stack – Redundant Physical	15
	Data Management – Understanding the waves of Managing Data – Defining Big Data – Building a Successful Big Data Management Architecture – Examining Big Data Types : Defining Structured Data – Defining Unstructured Data – Looking at Real Time and Non Real Time Requirements - Digging into Big Data Technology Components : Exploring the Big Data Stack – Redundant Physical Infrastructure – Security Infrastructure – Operational Databases –	
	Data Management – Understanding the waves of Managing Data – Defining Big Data – Building a Successful Big Data Management Architecture – Examining Big Data Types : Defining Structured Data – Defining Unstructured Data – Looking at Real Time and Non Real Time Requirements - Digging into Big Data Technology Components : Exploring the Big Data Stack – Redundant Physical Infrastructure – Security Infrastructure – Operational Databases – organizing data Services and Tools – Analytical Data Warehouses –	
	Data Management – Understanding the waves of Managing Data – Defining Big Data – Building a Successful Big Data Management Architecture – Examining Big Data Types : Defining Structured Data – Defining Unstructured Data – Looking at Real Time and Non Real Time Requirements - Digging into Big Data Technology Components : Exploring the Big Data Stack – Redundant Physical Infrastructure – Security Infrastructure – Operational Databases – organizing data Services and Tools – Analytical Data Warehouses – Big Data Analytics – Big Data Applications.	

	get Results - Modifying Business Intelligence Products to Handle	
	Big Data – Studying Big Data Analytics Examples – Big Data	
	Analytics Solutions – Understanding Text Analytics and Big Data :	
	Exploring Unstructured Data – Analysis and Extraction Techniques	
	- Putting Results Together with Structured Data - Putting Big Data	
	to use - Text Analytics Tools for Big Data - Customized	
	Approaches for Analysis of Big Data : Building New Models and	
	Approaches to Support Big Data - Understanding Different	
	Approaches to Big Data Analysis - Characteristics of a Big Data	
	Analysis Framework.	
III	OPERATIONALIZING BIG DATA: Making Big	15
	Data a Part of Your Operational Process - Integrating Big Data -	
	Incorporating big data into the diagnosis of diseases -	
	Understanding Big Data Workflows - Workload in context to the	
	business problem - Ensuring the Validity, Veracity, and Volatility	
	of Big Data - Security and Governance for Big Data Environments :	
	Security in Context with Big Data - Understanding Data Protection	
	Options - The Data Governance Challenge - Putting the Right	
	Organizational Structure in Place - Developing a Well Governed	
	and Secure Big Data Environment.	
IV	APPLIANCES AND BIG DATA	15
	WAREHOUSES: Integrating Big Data with the Traditional Data	
	Warehouse - Big Data Analysis and the Data Warehouse - Changing	
	the Role of the Data Warehouse - Changing Deployment Models in	
	the Big Data Era - Examining the Future of Data Warehouses -	
	Examining the Cloud and Big Data : Defining the Cloud in the	
	Context of Big Data - Understanding Cloud Deployment and	
	Delivery Models - The Cloud as an Imperative for Big Data -	
	Making Use of the Cloud for Big Data - Providers in the Big Data	
	Cloud Market.	

V	MAP REDUCE FUNDAMENTALS :Tracing the Origins of	15
	MapReduce - Understanding the map Function - Adding the reduce	
	Function - Putting map and reduce Together - Optimizing	
	MapReduce Tasks - Exploring the World of Hadoop : Explaining	
	Hadoop - Understanding the Hadoop Distributed File System	
	- HadoopMapReduce - The Hadoop Foundation and Ecosystem -	
	Building a Big Data Foundation with the Hadoop Ecosystem -	
	Managing Resources and Applications with Hadoop YARN -	
	Storing Big Data with HBase - Mining Big Data with Hive -	
	Interacting with the Hadoop Ecosystem.	
VI	Contemporary Issues: Expert lectures, online seminars -	-
	webinars.	

Text Books

"Big Data" by Judith Hurwitz, Alan Nugent, Dr. Fern Halper and Marcia Kaufman, WileyPublications, 2014.

Reference Book

"Big Data Imperatives: Enterprise Big Data Warehouse, BI Implementations and Analytics" by Soumendra Mohanty, Madhu Jagadeesh and Harsha Srivatsa, A press Media, Springer Science + Business Media New York, 2013

Web-Resources:

https://www.ti.rwth-aachen.de/teaching/BigData/FBDA.pdf

On completion of the Course, Students should be able to do

CO1: To provide an overview of an exciting growing field of Big Data analytics.

CO2: To discuss the challenges traditional data mining algorithms face when analyzing Big Data.

CO3: To introduce the tools required to manage and analyze big data like Hadoop, NoSql MapReduce.

CO4: To teach the fundamental techniques and principles in achieving big data analytics with scalability and streaming capability.

CO5: To introduce to the students several types of big data like social media, web graphs and data streams.

CO/BO				PSO						
CO/PO	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

apping of COs with POs & PSOs:

S - Strongly Correlated

M - Moderately Correlated

- W-Weakly Correlated
- N No Correlation

Semester-II /	DISTRIBUTED TECHNOLOGIES	Course Code:PGXI
Core Course-IX(CC)		
Instruction Hours: 5	Credits: 3	Exam Hours: 3
Internal Marks : 25	External Marks:75	Total Marks: 100

Knowledge	K1-Acquire / Remember	
Level	K2-Understanding	
	K3-Apply	
	K4-Analyze	
	K5-Evaluate	
	K6-Create	
Course	• This course aims to build concepts regarding the fundamental princi	ples of distributed
Objectives	systems.	
	• The design issues and distributed operating system concepts are covered	
	• To learn the principles, architectures, algorithms and programming	g models used in
	Distributed systems.	
	• To examine state-of-the-art distributed systems, such as Google File Sys	tem.
	• To design and implement sample distributed systems.	
UNIT	CONTENT	HOURS
Ι	INTRODUCTION TO DISTRIBUTED COMPUTING:	15
	Challenges involved in establishing remote connection – Strategies	
	involved in remote computation – Current Distributed computing	
	practices through Dot Net and Java technologies.	
TT		15
11	ADVANCED ADO. NET:Disconnected Data Access – Grid	15
	view, Details View, Form View controls - Crystal Reports - Role of	
	ADO, NET in Distributed Applications.	
III	ADVANCED ASP.NET:AdRotator, Multiview. Wizard and	15
	Image Map Controls – Master Pages – Site Navigation – Web Parts	
	- Uses of these controls and features in Website development	
	eses of these controls and reactives in website development.	
IV	ADVANCED FEATURES OF ASP.NET :Security in ASP,	15

	NET - State Management in ASP, NET - Mobile Application	
	development in ASP, NET - Critical usage of these features in	
	Website development.	
V	WEB SERVICES:Role of Web services in Distributed	15
	Computing - WSDL, UDDI, SOAP concepts involved in Web	
	Services - Connected a Web Service to a Data Base - Accessing a	
	Web Servicethrough ASP, NET application.	
VI	Contemporary Issues: Expert lectures, online seminars -	-
	webinars.	

Text Books:

Walther, ASP, NET 3.5, SAMS Publication, 2005.

Web-Resources:

http://www.sigc.edu/qb-18/cs/I%20M.Sc%20CS-%20Distributed%20Technologies.pdf

Course Outcomes:

On completion of the Course, Students should be able to do

CO1: Understand the features of Dot Net Framework along with the features of C#.

CO2: Build well-formed XML Document and implement Web Service using Java.

CO3: Students will identify the core concepts of distributed systems: the way in which several machines organize to correctly solve problems in an efficient, reliable and scalable way.

CO4: Students will examine how existing systems have applied the concepts of distributed systems in designing large systems, and will additionally apply these concepts to develop sample systems.

CO5: Apply Web Services concept in database.

Mapping of COs with POs & PSOs:

CO/DO				PSO						
CO/PO	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-II / Core Course-X(CC)	DISTRIBUTED TECHNOLOGIES LAB	Course Code: PGXJY
Instruction Hours: 4	Credits: 3	Exam Hours: 3
Internal Marks : 40	External Marks:60	Total Marks: 100

Course Objectives:

- To provide fundamental concept of Internet, JavaScript, XML, JSP, and ASP with a view to developing professional software development skills
- To examine state-of-the-art distributed systems, such as Google File System.
- To design and implement sample distributed systems.
- To learn the practical knowledge of using distributed application development packages

List of Practical's

- 1. Create a table and insert a few records using Disconnected Access.
- 2. Develop a project to update and delete few records using Disconnected Access.
- 3. Develop a project to view the records using GridView, DetailsView, FormView Controls.
- 4. Develop a project to generate a crystal report from an existing database.
- 5. Design a web page that makes uses of Ad Rotator Control.
- 6. Design a web page involving Multi View or Wizard Control.
- 7. Make use of Image Control involving two hot spots in a web page.
- 8. Design a simple web site that makes use of Master Pages.
- 9. Establish the security features in a simple web site with five pages.
- 10. Use state management concepts in a mobile web application.
- 11. Develop a web service that has an ASP.NET client.
- 12. Develop a web service to fetch a data from a table and send it across to the client

On completion of this lab course the students will be able to

CO1: Use the features of Dot Net Framework along with the features of C#.

CO2: Create user interactive web pages using ASP.Net.

CO3: Build well-formed XML Document and implement Web Service using Java.

CO4: Students will examine how existing systems have applied the concepts of distributed systems in designing large systems, and will additionally apply these concepts to develop sample systems.

CO5: Performing Database operations for various web applications.

CO/PO	РО							PSO		
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Mapping of COs with POs & PSOs:

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-II / Core Course-XI(CC)	ADVANCED PYTHON LAB	Course Code: PGXKY
Instruction Hours: 4	Credits: 3	Exam Hours: 3
Internal Marks : 40	External Marks:60	Total Marks: 100

Course Objectives:

- Describe the Numbers, Math functions, Strings, List, Tuples and Dictionaries in Python.
- Express different Decision Making statements and Functions.
- Understand and summarize different File handling operations.
- Explain how to design GUI Applications in Python and evaluate different databaseoperations

List of Practical's

- 1. Write Python applications using variables, data types
- 2. Write Python application using strings and functions.
- 3. Write Python applications using loops, arrays, sorting
- 4. Write Python applications using dictionaries, lists and tuples.
- 5. Write Python applications using matrices.
- 6. Create Calculator Program
- 7. Array Function using Numpy
- 8. Aggregation function using Numpy
- 9. Data Operation using Scipy Basics
- 10. Pandas Basics
- 11. Twitter API Integration for tweet Analysis

Course Outcomes

On completion of the course the learner will be able to

CO1: Design forms using various functions

CO2: Apply rich controls and conditional statement logic in Python

CO3: Demonstrate the functionality of stack and regular expressions through Python

CO4: Ability to Create and manipulate array functions using Numpy

CO5: Ability to Create indexing scripts using Pandas and Build applications using Pandas
Mapping of COs with POs & PSOs:

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-II/ Self-Paced Learning (SPL)	VIRTUALISATION AND CLOUD COMPUTING	Course Code:PGXL
Instruction Hours: -	Credits: 2	Exam Hours: 3
Internal Marks : 25	External Marks:75	Total Marks: 100

Knowledge	K1-Acquire / Remember	
Level	K2-Understanding	
	K3-Apply	
	K4-Analyze	
	K5-Evaluate	
	K6-Create	
Course	• To learn the different types of cloud computing services.	
Objectives	• To make a cloud computing application unique, managing and working	ng with cloud
	security.	
	• Understand the concepts, characteristics, delivery models and bene	fits of cloud
	computing	
	• Understand the key security and compliance challenges of cloud computing	ıg
	• Understand the different characteristics of public, private and hybrid clou	id deployment
	models.	
UNIT	CONTENT	HOURS
Ι	INTRODUCTION	-
	Evolution of Cloud Computing -System Models for Distributed and Cloud	
	Computing - NIST Cloud Computing Reference Architecture - Infra	
	structure as a Service (IaaS) - Resource Virtualization - Platform as a	
	Service (PaaS) - Cloud platform & Management - Software as a Service	
	(SaaS) - Available Service Providers.	
II	VIRTUALIZATION:	-
	Basics of virtualization - Types of Virtualization - Implementation	
	Levels of Virtualization - Virtualization Structures – Tools and Mechanisms -	
	Virtualization of CPU, Memory, I/O Devices - Desktop virtualization -	

	Server Virtualization - Linux KVM, Xen, Qemu, LXC, OpenVZ	
III	CLOUD INFRASTRUCTURE: FOSS Cloud Software Environments - Eucalyptus, Open nebula, OpenStack - OpenStack Architecture - Compute, Object Storage, Image Service, Identity, Dashboard, Networking, Block Storage, Metering, Basic Cloud Orchestration and Service Definition.	-
IV	PROGRAMMING MODEL: Parallel and Distributed programming Paradigms - MapReduce, Twister and Iterative MapReduce - Mapping Applications - Programming Support - Apache Hadoop - HDFS, Hadoop I/O, Hadoop configuration, MapReduce on Hadoop.	-
V	SECURITY IN THE CLOUD: Security Overview - Cloud Security Challenges - Software-as-a-Service Security - Security Governance - Risk Management - Security Monitoring - Security Architecture Design - Data Security - Application Security - Virtual Machine Security - Qubes - Desktop security through Virtualization	-
VI	Contemporary Issues: Expert lectures, online seminars – webinars.	-

1. Kai Hwang, Geoffrey C Fox, Jack G Dongarra, "Distributed and Cloud Computing, FromParallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2012.

2. John W.Ritting house and James F.Ransome "Cloud Computing: Implementation, Management, and Security", CRC Press, 2010.

Reference Book

Prashanta Kumar Das and Ganesh Chandra Daka, "Design and Use of VirtualizationTechnology in Cloud Computing", IGIGlobal, 2017.

Web-Resources:

http://www.srideviengg.com/documents/cse/cloud%20computing.pdf http://textofvideo.nptel.ac.in/106105167/lec7.pdf

https://nptel.ac.in/courses/106104182/

On completion of the Course, Students should be able to do

CO1: Posses knowledge on Cloud Computing and its architecture

CO2: Acquire knowledge on Virtualization techniques

CO3: Understand cloud infrastructure services

CO4: Identify the parallel and distributed programming paradigms

CO5: Handle various cloud computing tools to learn the Cloud security and security challenges

Mapping of COs with POs & PSOs:

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-III /	DATA MINING AND DATA	Course Code: PGXM
Core Course-XII(CC)	WAREHOUSING	
Instruction Hours: 5	Credits: 4	Exam Hours: 3
Internal Marks : 25	External Marks:75	Total Marks: 100

Knowledge	K1-Acquire / Remember	
Level	K2-Understanding	
	K3-Apply	
	K4-Analyze	
	K5-Evaluate	
	K6-Create	
Course Objectives	• To understand the practical methods and techniques for building a data w	varehouse.
	• To understand data mining concepts, tasks and their techniques.	
	• To understand the basic principles, concepts and applications of data w	arehousing and
	data mining.	
	• Ability to do Conceptual, Logical, and Physical design of Data War	ehouses OLAP
	applications and OLAP deployment.	
	• Have a good knowledge of the fundamental concepts that provide th	e foundation of
	data mining.	
UNIT	CONTENT	HOURS
Ι	INTRODUCTION : What is Data mining. Data mining - important	15
	Data mining - various kind of data mining Functionalities – Various kinds	
	Dura mining various kind of dura mining functionarities various kinds	
	of Patterns Pattern Interesting Classification of Data mining Systems Data	
	mining Task Primitives Integration of Data Mining System Major issues in	
	Data Mining.	
II	DATA PROCESSING :Process the Data Descriptive Data	15
	Summarization – Measuring Central Tendency Dispersion of Data Graphic	
	Displays of –Basic Descriptive Data Summaries Data Cleaning Data	

	Concept Hierarchy Generation	
III	DATA WAREHOUSE OLAP TECHNOLOGY :An overview - Data Warehouse Multidimensional Data Model Data Warehouse Architecture Data Warehouse Implementation from Data Warehouse to Data mining	15
IV	MINING Frequent Patterns Associations Correlations - Basic Concepts Road Map Efficient Scalable Frequent Item set Mining methods Mining – Various Kinds of Association rules Analysis - Association mining to Correlation Constrain Based Association mining .	15
V	Classification – Prediction – Cluster analysis - Applications and trends in data mining.	15
VI	Contemporary Issues: Expert lectures, online seminars – webinars.	-

 Data Mining (Concepts and Techniques) Second Ed, Author : Jiawei Han and Micheline Kamber Publishers : Morgan Kaufmann Publishers (An imprint of Elsevier)

Reference Book

- 1. Data Mining (Next Generation Challenges and Future Directions) Author : Karguta, Joshi, Sivakumar & Yesha Publishers : Printice Hall of India (2007)
- Data Mining (Practical Machine Learning Tools and Techniques (Second Edition) Author: Ian H. Witten & Eibe Frank Publishers: Morgan Kaufmann Publishers (An imprintof Elsevier).
- Data Warehousing, Data mining & OLAP (Edition 2004) Author: Alex Benson, Stephen V. Smith Publishers: Tata McGraw – Hill

Web-Resources:

shodhganga.inflibnet.ac.in/jspui/bitstream/10603/199511/16/16_references.pdf http://www.vssut.ac.in/lecture_notes/lecture1428550844.pdf https://nptel.ac.in/courses/106105174/

Course Outcomes:

On completion of the Course, Students should be able to do

CO1:To introduce the concept of data Mining as an important tool for enterprise data management and as a cutting edge technology for building competitive advantage.

CO2: To enable students to effectively identify sources of data and process it for data mining

CO3: To impart knowledge of tools used for data mining

CO4: To provide knowledge on how to gather and analyze large sets of data to gain useful business understanding.

CO5: To make students well versed in all data mining algorithms, methods of evaluation.

Mapping of COs with POs & PSOs:

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-III /	DATA MINING LAB	Course Code: PGXN
Core Course-XIII(CC)		
Instruction Hours: 5	Credits: 4	Exam Hours: 3
Internal Marks : 40	External Marks:60	Total Marks: 100

Course Objectives:

- To get hands on experience in developing applications using data mining tool.
- To evaluate the different models of OLAP and data preprocessing.
- To enlist various algorithms used in information analysis of Data Mining Techniques.
- To demonstrate the knowledge retrieved through solving problems.
- Learning performance evaluation of data mining algorithms in a supervised and an unsupervised setting.

List of Practical's

Exercise 1

Preprocessing

a. Datatype Conversion

b. Data Transformation

Exercise 2

Filters- Practical

- a. Replace Missing Values
- b. Add Expression

Exercise 3

Feature Selection Select Attributes- Practical

- a. Filter
- b. Wrapper
- c. Dimensionality Reduction

Exercise 4

Supervised Technique

Classifier - Function - Practical

a. Multilayer Perceptron Tree - Practical

Exercise 5

Classifier- Bayes - Practical

a. Naive Bayes Rule- Practical

b. Zero R

Exercise 6

Unsupervised TechniquesClustering- Theory

Partitioned - Algorithm - Practical Hierarchical Algorithm -

Practical Semi Supervised Algorithm - Practical

Exercise 7

Association Rule Mining

A-Priori – Algorithm – Practical Predictive A-Priori

-Practical

Exercise 8

Experimenter

Dataset - Test - Practical Algorithm based -Test -

Practical

Exercise 9

Knowledge Flow

Feature Selection – PracticalClustering – Practical

Exercise 10

Knowledge Flow Classification – Practical

Course Outcomes:

On completion of the Course, Students should be able to do

CO1: Perform exploratory analysis of the data to be used for mining.

CO2: Implement the appropriate data mining methods like classification, clustering or Frequent

Pattern mining on large data sets.

CO3: Define and apply metrics to measure the performance of various data mining algorithms.

CO4: Develop skills and apply data mining tools for solving practical problems

CO5: Advance relevant programming skills and gain experience and develop research skills by reading the data mining literature.

Mapping of COs with POs & PSOs:

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-III /	MACHINE LEARNING AND R	Course Code: PGXO
Core Course-XIV(CC)	PROGRAMMING	
Instruction Hours: 5	Credits: 4	Exam Hours: 3
Internal Marks : 25	External Marks:75	Total Marks: 100

Knowledge	K1-Acquire / Remember	
Level	K2-Understanding	
	K3-Apply	
	K4-Analyze	
	K5-Evaluate	
	K6-Create	
Course	Understand Machine Learning and R	
Objectives	• Gain basic ideas on Types and Methods in ML	
	• Fetch insights on R Package	
	• Implement and apply the different categories of Machine Learning Algori	thms
	• Apply the machine learning concept using R Programming	
UNIT	CONTENT	HOURS
Ι	Introducing Machine Learning : What is ML? – Varieties of ML	15
	- Types of Learning -Sample Applications - Introducing ML: Origins of	
	Machine Learning (ML) - Uses and Abuses of ML - How do Machines	
	Learn? - Steps to apply ML to your data choosing a ML algorithm - Using	
	R for Machine Learning: Installing and Loading R Packages.	
II	Lazy Learning – Classification Using Nearest Neighbors :	15
	Understanding Classification using Nearest Neighbours (NN): KNN	
	Algorithm – Calculating Distance – Choosing an appropriate K –	-
	Preparing data for use with KNN - Why is the KNN algorithm lazy? -	
	Probabilistic Learning - Classification using Naïve Bayes: Understanding	
	Naïve Bayes - Basic concepts of Bayesian Methods - The Naïve Bayes	

	Algorithm - Naïve Bayes classification – #Laplace Estimator# – using	
TIT		15
111	Divide and Conquer - Classification using Decision Trees and	15
	Rules : Understanding Decision Trees - Divide and Conquer - C5.0	
	decision Tree algorithm – Understanding Classification Rules – Separate	
	and Conquer – The One Rule algorithm – The RIPPER algorithm	
	- Rules for Decision Trees - Forecasting Numeric Data - Regression	
	Methods : Understanding Regression - Simple Linear Regression -	
	#Ordinary Least Squares Estimation# - Correlations - Multiple Linear	
	Regression – Understanding Regression Trees and model trees.	
IV	Black Box Methods: Neural Networks and Support Vector	15
	Machines (SVM) :Understanding Neural Networks: From biological to	
	Artificial Neurons – Activation Functions – Network Topology – Training	
	Neural Networks with Backpropagation - Modelling the strength of	
	concrete with ANNs: Collecting Data – Exploring and Preparing the data	
	– Training a model on the data – Evaluating model performance –	
	improving model performance – Understanding SVM: Classification with	
	hyper planes – Finding the maximum margin – Using Kernels for Non-	
	Linear Spaces – #Finding Groups of Data# –clustering with K-Means:	
	Understanding Clustering – K-Means algorithm for Clustering.	
V	Using R for Machine Learning : Managing and Understanding	15
	Data: R Data Structures – Vectors – Factors: Lists – Data Frames –	
	Matrices and Arrays – Managing Data with R: Saving and Loading R Data	
	structures – Importing and Saving data from CSV files – Importing Data	
	from SOL databases – Exploring and Understanding Data: Exploring the	
	structure of data Exploring numeric variables #Exploring Catagorical	
	Variables# Exploring relationships between variables	
V I	Contemporary Issues: Expert lectures, online seminars – webinars.	-

Reference Book:

- 1. Shai Shalev-Shwartz, Understanding Machine Learning: From Theory to Algorithms, Cambridge UniversityPress, 2014.
- 2. Alex Smola and SVN Vishwanathan, Introduction to Machine Learning,- Cambridge University Press.- ISBN: 0521 82583 0, 2010.
- 3. Jason Bell , Machine Learning Hands-on for Developers and Technical Professionals, Wiley Publications.

Web-Resources:

https://www.datacamp.com/community/tutorials/machine-learning-in-r https://www.geeksforgeeks.org/introduction-to-machine-learning-in-r/ https://www.kaggle.com/camnugent/introduction-to-machine-learning-in-r-tutorial

Course Outcomes:

On completion of this lab course the students will be able to

CO1: Statistical Learning: Understand the behavior of data as you build significant models

CO2: R for Machine Learning: Learn about the various libraries offered by R to manipulate, preprocess and visualize data

CO3: Optimization Techniques: Learn to use optimization techniques to find the minimum error in your machine learning model

CO4: Fundamentals of Machine Learning: Supervised, Unsupervised Machine Learning and relation of statistical modeling to machine learning

CO5: Machine Learning Algorithms: Learn various machine learning algorithms like KNN, Decision Trees, SVM, Clustering in detail

Mapping of COs with POs & PSOs:

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-III /	EMBEDDED LAB	Course Code: PGXPY
Core Course-XV(CC)		
Instruction Hours: 5	Credits: 4	Exam Hours: 3
Internal Marks : 40	External Marks:60	Total Marks: 100

Course Objectives:

- Introduction to embedded systems design tools and hardware programmers.
- Students are able to understand and acquire basic fundamental knowledge of electronics components and circuits.
- Experiments using both simulation and practical implementation of the basic building blocks of a microcontroller including timers, counters, PWM generation, I/O techniques and requirements, A/D conversion, serial communications.
- Experiments to explore the system design process using hardware-software co design process. Design project.
- Students are able to effectively evaluate basic electronics circuits

List of Practical's:

- 1. I/O Port Programming-LED Blinking
- 2. LCD Interfacing
- 3. Counter Programming
- 4. PWM Programming
- 5. Study Of Analog To Digital Converter Programming
- 6. Compare Mode Programming
- 7. Capture Mode Programming
- 8. Serial Communication- USART- Polling and Interrupts
- 9. Keypad Interfacing
- 10. Interfacing Of Digital to Analog Converter

On completion of the Course, Students should be able to do

CO1: Experience with a set of tools for embedded systems programming and debugging.

CO2: Experience with implementing several embedded systems with particular focus on the interaction between multiple devices.

CO3: Design products using microcontrollers and various analog and digital ICs.

CO4: Can read the datasheet for any embedded system, understand how it works.

CO5: Develop existing embedded systems by formulating the system design problem including the design constraints, create a design that satisfies the constraints, implement the design in hardware and software, and measure performance against the design constraints.

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Mapping of COs with POs & PSOs:

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-I /	ARTIFICIAL INTELLIGENCE	Course Code: PGXE1
Core Elective –I (EC)		
Instruction Hours: 4	Credits: 4	Exam Hours: 3
Internal Marks : 25	External Marks:75	Total Marks: 100

Knowledge	K1-Acquire / Remember	
Level	K2-Understanding	
	K3-Apply	
	K4-Analyze	
	K5-Evaluate	
	K6-Create	
Course	• Understood the AI & Expert Systems - Learnt the Heuristic techniques and	reasoning.
Objectives	• An ability to apply knowledge of computing and mathematics appropr	iate to the
	discipline.	
	• An ability to analyze a problem and identify and define the computing re	quirements
	appropriate to its solution.	
	• An ability to use current techniques, skills, and tools necessary for computin	g practice.
	• An ability to design, implement, and evaluate a computer-based system	n, process,
	component, or program to meet desired needs.	
UNIT	CONTENT	HOURS
UNIT I	CONTENT INTRODUCTION AI Problems: Underlying Assumptions. Al	HOURS 12
UNIT I	CONTENT INTRODUCTION AI Problems: Underlying Assumptions. AI Techniques: Tic-Tac-Toe - Criteria for Success Problems, Problem Spaces	HOURS 12
UNIT I	CONTENT INTRODUCTION AI Problems: Underlying Assumptions. AI Techniques: Tic-Tac-Toe - Criteria for Success Problems, Problem Spaces and Search: Defining a problem as a State space search - Production Systems:	HOURS 12
UNIT I	CONTENTINTRODUCTIONAIProblems:UnderlyingAssumptions.AITechniques:Tic-Tac-Toe-CriteriaforSuccessProblems,ProblemSpacesand Search:Defining a problem as a State space search -Production Systems:Control Strategies-Heuristics.	HOURS 12
UNIT I II	CONTENTINTRODUCTIONAIProblems:UnderlyingAssumptions.AITechniques:Tic-Tac-Toe-CriteriaforSuccessProblems,ProblemSpacesand Search:Defining a problem as a State space search -ProductionSystems:ControlStrategies-Heuristics.HEURISTICSEARCHTECHNIQUES:GenerateandTest-Hill	HOURS 12 12
UNIT I II	CONTENTINTRODUCTIONAIProblems:UnderlyingAssumptions.AITechniques:Tic-Tac-Toe-CriteriaforSuccessProblems,ProblemSpacesand Search:Defining a problem as a State space search -ProductionSystems:ControlStrategies-Heuristics.HEURISTICSEARCHTECHNIQUES:GenerateandTest+HillClimbing-Best-First-Means-endanalysis.Knowledgerepresentation	HOURS 12 12
UNIT I II	CONTENTINTRODUCTIONAIProblems:UnderlyingAssumptions.AITechniques:Tic-Tac-Toe- CriteriaforSuccessProblems, ProblemSpacesand Search:Defining a problem as a State space search - Production Systems:Control Strategies – Heuristics.Control Strategies- Heuristics.HEURISTICSEARCHTECHNIQUES:GenerateandTest - HillClimbing-Best-First -Means-endanalysis.Knowledgerepresentationissues:Representationsandmappings-ApproachestoKnowledge	HOURS 12 12
UNIT I	CONTENTINTRODUCTIONAIProblems:UnderlyingAssumptions.AITechniques:Tic-Tac-Toe- CriteriaforSuccessProblems, ProblemSpacesand Search:Defining a problem as a State space search - Production Systems:Control Strategies-Heuristics.HEURISTICSEARCHTECHNIQUES:GenerateandTest - HillClimbing-Best-First -Means-endanalysis.Knowledgerepresentationissues:Representationsandmappings-ApproachestoKnowledgerepresentations-Issuesin Knowledgerepresentations - FrameFrameFrame	HOURS 12 12
UNIT I II III	CONTENTINTRODUCTION AI Problems: Underlying Assumptions. AlTechniques: Tic-Tac-Toe - Criteria for Success Problems, Problem Spacesand Search: Defining a problem as a State space search - Production Systems:Control Strategies –Heuristics.HEURISTIC SEARCH TECHNIQUES:Generate and Test - HillClimbing- Best-First - Means-end analysis. Knowledge representationissues: Representations and mappings -Approaches to Knowledgerepresentations - Issues in Knowledge representations - Frame Problem.USING PREDICATE LOGIC:Representing simple facts in logic	HOURS 12 12 12
UNIT I II III	CONTENT INTRODUCTION AI Problems: Underlying Assumptions. AI Techniques: Tic-Tac-Toe Criteria for Success Problems, Problem Spaces and Search: Defining a problem as a State space search Production Systems: Control Strategies Heuristics. HEURISTIC SEARCH TECHNIQUES:Generate and Test Hill Climbing- Best-First Means-end analysis. Knowledge representation issues: Representations and mappings -Approaches Knowledge representations -Issues in Knowledge representations - Frame Problem. USING PREDICATE LOGIC:Representing simple facts in logic Representing Instance and Is a relationships Computable functions an	HOURS 12 12 12

	Resolution in propositional logic-Unification algorithm-Resolution in Predicat	
	logic- Need to try several substitutions.	
IV	REPRESENTING KNOWLEDGE USING RULES:Procedural Vs	12
	Declarative knowledge - Logic Programming. Forward Vs Backward	
	Reasoning: Backward -Chaining Rule systems-Forward -Chaining Rule	
	Systems-Combining Forward and Backward reasoning - Matching : Indexing-	
	Matching with variables-Complex and Approximate matching-conflict	
	matching – Control knowledge.	
V	GAME PLAYING Overview : The minimax search procedure.	12
	Expert System: Representing and using Domain Knowledge-Expert system	
	shells – Explanation. Perception and Action: Real time Search. Perception–	
	Vision-Speech Recognition. Action-Navigation-Manipulation-Robot	
	Architectures.	
VI	Contemporary Issues: Expert lectures, online seminars – webinars.	-

Elaine Rich and Kevin Knight," Artificial Intelligence", Tata McGraw Hill Publisherscompany Pvt Ltd, Second Edition, 1991.

Unit1: Chapter 1(1.1,1.3.1.5), Chapter 2(2.1,2.2) Unit2: Chapter 3(3.1,3.2,3.3,3.6), Chapter 4(4.1,4.2,4.3,4.4). Unit3: Chapter 5(5.1,5.2,5.3,5.4). Unit4: Chapter 6. Unit5: Chapter 12(12.1,12.2), Chapter 20 and Chapter 21.

Web Resources:

https://eecs.wsu.edu/~cook/ai/lectures/p.hltm http://www.vssut.ac.in/lecture_notes/lecture1428643004.pdf

On completion of the Course, Students should be able to do

CO1: To understand the basics of Artificial Intelligence, Intelligent Agents and its structure

CO2: To understand the problem solving by various searching techniques

CO3: To understand the concept of informed search and Exploration

CO4: To understand the concept of constraint satisfaction Problems and Adversarial Search

CO5: To Understand what is Reasoning and Knowledge Representation and to understand the

concept of Reasoning with Uncertainty & Probabilistic Reasoning

Mapping of COs with POs & PSOs:

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	М	S	S	S	S	S
CO3	S	М	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	М	S	S	М	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-I /	HIGH PERFORMANCE COMPUTING	Course Code: PGXE1
Core Elective –I (EC)		
Instruction Hours: 4	Credits: 4	Exam Hours: 3
Internal Marks : 25	External Marks:75	Total Marks: 100

Knowledge	K1-Acquire / Remember	
Level	K2-Understanding	
	K3-Apply	
	K4-Analyze	
	K5-Evaluate	
	K6-Create	
Course Objectives	• Provide systematic and comprehensive treatment of the hardware and the	software high
Objectives	performance techniques involved in current day computing.	
	• Introduce the fundamentals of high performance computing with	the graphics
	processing units and many integrated cores using their architectures and o	corresponding
	programming environments.	
	• Introduce the learner to fundamental and advanced parallel algorithms thro	ough the GPU
	and MIC programming environments	
	• Provide a strong foundation on memory hierarchy design and trade	eoffs in both
	uniprocessor and multiprocessors.	
	• Illustrate the cache coherence and consistency problems in multiprocess	ors, and their
	existing solutions.	
UNIT	CONTENT	HOURS
Ι	Modern Processors: Stored-program computer architecture	12
	- General- purpose cache- based microprocessor architecture - Memory	
	hierarchies - Multi core processors - Multithread processors - Vector	
	processors - Basic optimization techniques for serial code - Common sense	
	optimizations - Simple measures - large impact - Role of compilers.	
II	Parallel Computers: Data access optimization - Balance	12
	analysis and light speed estimates. Storage order Taxonomy of perallel	
	analysis and light speed estimates - Storage order - Laxonomy of paraller	
	computing paradigms Shared memory computers - Distributed memory	

	computers - Hierarchical systems - Networks - Basics of parallelization-	
	Parallelism – Parallel scalability.	
III	Principles of Parallel Algorithm Design: Preliminaries - Decomposition techniques - Characteristics of tasks and interactions - Mapping techniques for load balancing - Methods for containing interaction overheads - Parallel algorithm models – Basic communication operations.	12
IV	Sorting and Graph Algorithms: Dense matrix Algorithm: Matrix- vector multiplication - Martix- matrix multiplication- Sorting: Issues in sorting on parallel computing - Sorting networks - Bubble sorts and its variants - Quick sort - Graph algorithms - Definition and representation - Prims algorithm - Dijkstra's algorithm - All pairs shortest path - Transitive closure – Connected components.	12
V	Shared-Memory Parallel Programming with OpenMP: Short introduction to OpenMP, Advanced OpenMP: Wavefront parallelization, Profiling OpenMP programs Performance pitfalls, Case study : OpenMP- parallel Jacobi algorithm & Parallel sparse matrix-vector multiply.	12
VI	Contemporary Issues: Expert lectures, online seminars – webinars.	-

- Georg Hager and Gerhard Wellein, Introduction to High Performance Computing for Scientists and Engineers, Chapman & Hall, 2010.
- 2. Ananth Grama and George Karypis, Introduction to parallel computing, Addison-Wesley2009.

Reference Book

John Levesque and Gene Wagenbreth, High Performance Computing: Programming and Applications, Chapman & Hall, 2010.

Web-Resources:

https://www.tutorialspoint.com/parallel_computer_architecture/

http://homepage.physics.uiowa.edu/~ghowes/teach/ihpc10/lec/ihpc10Lec_IntroHPC10.pdf http://phycomp.technion.ac.il/~nanco/nan2/main.pdf

https://tutorialspoint.dev/computer-science/computer-organization-and-

architecture/introduction-to-parallel-computing

On completion of the Course, Students should be able to do

CO1: To understand fundamental concepts and techniques in parallel computation structuring and design.

CO2: To Study various architectures of high - performance computing systems.

CO3: To demonstrate the principles of Parallel Algorithm Design.

CO4: Investigate modern design structures of pipelined and multiprocessors systems.

CO5: Understand the algorithms using parallel programming principle and to study about Parallel sparse matrix and vector multiplication

Mapping of COs with POs & PSOs:

CO/PO	РО						PSO			
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	Μ	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	Μ	S	S	S	S	S
CO5	М	S	М	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-I /	PARALLEL AND DISTRIBUTED	Course Code: PGXE1
Core Elective –I (EC)	COMPUTING	
Instruction Hours: 4	Credits: 4	Exam Hours: 3
Internal Marks : 25	External Marks:75	Total Marks: 100

Knowledge	K1-Acquire / Remember	
Level	K2-Understanding	
	K3-Apply	
	K4-Analyze	
	K5-Evaluate	
	K6-Create	
Course	• Understand the requirements for programming parallel systems and how the	y can be used
Objectives	to facilitate the programming of concurrent systems.	
	• To learn the architecture and parallel programming in graphics processing un	nits (GPUs).
	• Understand the memory hierarchy and cost-performance tradeoffs.	
	• Analytical modeling and performance of parallel programs.	
UNIT	CONTENT	HOURS
Ι	Introduction: Computer Organization for Parallel and Distributed	12
	Computing- Communications and Computer networks-OS for distributed	
	and parallel computing- Client/Server Model-Distributed database Systems-	
	Parallel programming languages and algorithms.	
	Computer Organization for Parallel and Distributed Computing:	
	Pipeline and vector processors-Multicomputer and computer networks-	
	Multiprocessors-Massively Parallel Architecture-Non-von Neumann-type	
	computers-Cache architectures in Multiprocessors.	
II	Operating System for Distributed and Parallel Computing: Network	12
	Operating Systems-Distributed Operating Systems-Operating systems for	
	parallel computing-Distributed and parallel system modeling-Example	
	Systems.	
III	Client Server Model: File Servers-Name and directory Servers-Printer	12
	Servers- Electronic Mail Server-Move to Client/Server Systems.	

IV	Distributed Database Systems: Introductory Concepts-Case for	12
	Distribution- Distribution problem and pattern-Queries and updates in	
	DDBS-Failures-Example Patterns.	
V	Parallel Programming Languages and Algorithms: Parallel language and	12
	algorithm design for the array processor-Von Neumann-type languages-C,	
	C++ and Parallel C++-Non-von Neumann-type languages.	
VI	Contemporary Issues: Expert lectures, online seminars – webinars.	-

An Introduction to Distributed and Parallel Computing (Second Edition) by JOEL .CRICHLOW, PHI Publications.

Web-Resources:

https://sites.engineering.ucsb.edu/~hpscicom/p1.pdfhttps://www.gacbe.ac.in/pdf/ematerial/18MC S35E-U1.pdf

Course Outcomes:

On completion of the Course, Students should be able to do

CO1: Develop and apply knowledge of parallel and distributed computing techniques and methodologies.

CO2: Apply design, development, and performance analysis of parallel and distributed applications.

CO3: Use the application of fundamental Computer Science methods and algorithms in the development of parallel applications.

CO4: Explain the design, testing, and performance analysis of a software system, and to be able to communicate that design to others.

Mapping of COs with POs& PSOs:

CO/PO	РО						PSC)		
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	М	S	S	S	S	S	S	S
CO3	S	S	S	М	S	S	S	S	S	S
CO4	М	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-II / Core Elective –II (EC)	ETHICAL HACKING	Course Code: PGXE2
Instruction Hours: 4	Credits: 3	Exam Hours: 3
Internal Marks : 25	External Marks:75	Total Marks: 100

Knowledge K1-Acquire / Remember	
Level K2-Understanding	
K3-Apply	
K4-Analyze	
K5-Evaluate	
K6-Create	
• Use new career opportunities available in IT profession, audits and others with spe	cial skills such as
Objectives energy efficiency, ethical IT assets disposal, carbon footprint estimation, reporting ar	d development of
green products, applications and services.	
Introduces the concepts of Ethical Hacking	
• Gives the students the opportunity to learn about different tools and techniques in E	hical hacking and
security	
Practically apply Ethical hacking tools to perform various activities	
UNIT CONTENT	HOURS
I INTRODUCTION TO HACKING: Importance of Security	_ 12
Elements of Security – Phases of an Attack – Types of Hacker Attacks – Hacktiv	sm
- Vulnerability Research - Introduction to Foot printing - Information Gather	ing
Methodology – Foot printing Tools – WHOIS Tools – DNS Information Tool	3 —
Locating the Network Range – Meta Search Engines	
Locating the retwork Range - Meta Search Engines	
II INTRODUCTION TO SCANNING: Objectives – Scann	ng 12
II INTRODUCTION TO SCANNING: Objectives – Scann Methodology – Tools – Introduction to Enumeration – Enumeration Technique - <t< th=""><th>ing 12</th></t<>	ing 12
II INTRODUCTION TO SCANNING: Objectives – Scann Methodology – Tools – Introduction to Enumeration – Enumeration Technique Enumeration Procedure – Tools	ing 12 3 -
II INTRODUCTION TO SCANNING: Objectives – Scann Methodology – Tools – Introduction to Enumeration – Enumeration Technique Enumeration Procedure – Tools Enumeration Procedure – Tools	ing 12 S -
II INTRODUCTION TO SCANNING: Objectives – Scann Methodology – Tools – Introduction to Enumeration – Enumeration Technique Enumeration Procedure – Tools III CRACKING PASSWORDS: Password Cracking Websites	ing 12 s - 12 - 12
II INTRODUCTION TO SCANNING: Objectives – Scann Methodology – Tools – Introduction to Enumeration – Enumeration Technique Enumeration Procedure – Tools III CRACKING PASSWORDS: Password Cracking Websites Password Guessing – Password - Cracking Tools – Count Cracking Count	$\frac{12}{12}$

	Spyware.	
IV	PROGRAMMING FUNDAMENTALS C Language – Html – Perl –	12
	Windows OS Vulnerabilities – Tools For Identifying Vulnerabilities –	
	Countermeasures – Linux OS Vulnerabilities – Tools For Identifying Vulnerabilities	
	– Countermeasures.	
V	SECURITY ASSESSMENTS: Types of Penetration Testing- Phases of	12
	Penetration Testing - Tools - Choosing Different Types of Pen-Test Tools -	
	Penetration Testing Tools.	
VI	Contemporary Issues: Expert lectures, online seminars – webinars.	-

Ec-Council, "Ethical Hacking and Countermeasures: Attack Phases", Delmar Cengage Learning, 2009.

Reference Book

- 1. Michael T. Simpson, Kent Backman, James E. Corley, "Hands-On Ethical Hacking and Network Defense", Cengage Learning, 2012.
- 2. Patrick Engebretson, "The Basics of Hacking and Penetration Testing Ethical Hacking and Penetration Testing Made Easy", Syngress Media, Second Revised Edition, 2013.

Web-Resources:

https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_tutorial.pdf https://www.uio.no/studier/emner/matnat/ifi/IN5290/h18/lectures/inf5290-2018-101introductionhical_hacking.pdf http://cdn.ttgtmedia.com/searchNetworking/downloads/hacking_for_dummies.pdf

On completion of the Course, Students should be able to do

CO1: Develop and apply knowledge of ethical IT assets

CO2: Apply difference tools and techniques and security

CO3: Use the audits and other special skills in ethical for IT profession.

CO4: Explain the design, testing, and performance various ethical hacking tools.

CO/PO	РО						PSO			
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	Μ	S	S	S	S	S
CO5	S	М	S	S	S	S	S	S	S	S

Mapping of COs with POs & PSOs:

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-II /	CRYPTOGRAPHY AND NETWORK	Course Code: PGXE2
Core Elective –II (EC)	SECURITY	
Instruction Hours: 4	Credits: 3	Exam Hours: 3
Internal Marks : 25	External Marks:75	Total Marks: 100

77 1 1		
Knowledge	K1-Acquire / Remember	
Level	K2-Understanding	
	K3-Apply	
	K4-Analyze	
	K5-Evaluate	
	K6-Create	
Course	• To impart knowledge related to the various concepts, methods of Netw	vork Security
Objectives	using cryptography basics, program security, database security and	security in
	networks.	
	• The concepts of classical encryption techniques and concepts of finit	te fields and
	numbertheory.	
	• And explore the working principles and utilities of various cryptograph	ic algorithms
	including secret key cryptography, hashes and message digests, and	l public key
	algorithms.	
	• The concepts of cryptographic utilities and authentication mechanism	ns to design
	secureapplications.	
	• The ability to use existing cryptographic utilities to build program	s for secure
	communication.	
UNIT	CONTENT	HOURS
Ι	NETWORK SECURITY: Security Trends - The OSI Architecture	12
	- Security Attacks - Security Services - Security Mechanisms - A model	
	for Network Security. CLASSIC ENCRYPTION TECHNIQUES:	
	Symmetric Cipher Model - Substitution Techniques - Transposition	
	techniques - Rotor Machines - Steganography.	
II	BLOCK CIPHERS AND DATA ENCRYPTION STANDARDS:	12
	Block Cipher- Principles – Data Encryption Standard - The strength of	
	DES –Differential and Linear Cryptanalysis – Block Cipher design	

	principles - ADVANCED ENCRYPTION STANDARD: The AES	
	Cipher.	
III	PUBLIC KEY ENCRYPTION AND DIGITAL SIGNATURES:	12
	Principles of Public Key Crypto Systems -The RSA algorithm.	
	Message Authentication: Authentication Requirements -Authentication	
	Functions - Message Authentication codes - Hash Functions - Security of	
	Hash Functions and MAC. Digital Signatures: Authentication Protocols.	
IV	AUTHENTICATION APPLICATIONS	12
	Kerberos - X.509 Authentication Service - PKI. Electronic Mail	
	Security: Pretty Good Piracy - S/ MIME. WEB SECURITY: Web Security	
	Considerations SSL and Transport Layer Security.	
V	SYSTEM SECURITY: Intruders - Intrusion Detection – Password	12
	Management. Firewalls: Firewall Design Principles - Trusted Systems.	
VI	Contemporary Issues: Expert lectures, online seminars – webinars.	-

William Stallings, "Cryptography and network Security - Principles and Practices", Prentice Hall (Pearson Education), 7th Ed., 2016.

Reference Book:

AtulKahate, "Cryptography and Network Security", Tata McGraw Hill Publications, New Delhi, 20Charles P. Pfleeger, Shari L. Pfleeger, "Security in Computing", Prentice Hall, 5th Ed., 2015.

Web-Resources:

http://williamstallings.com/Extras/SecuryNotes/ http://www.vssut.ac.in/lecture_notes/lecture1428550736.pdf http://www.sasurieengg.com/ecourse-material/It-MCA/III- IT/3.IT2352Cryptography%20and%20Network%20Security.pdf

On completion of the Course, Students should be able to do

CO1: Explain the basics of number theory and compare various encryption techniques.

CO2: Understand the manner in which message Authentication code and hash function

work and the functionality of public key cryptography.

CO3: Familiarize in intrusion detection and firewall design

CO4: Examine the different types of security systems and applications.

CO5: Discuss different levels of security and services and recognize various security policies

CO/PO	РО				PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	М	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	М	S	S	S	S	S	S	S	S

Mapping of COs with POs & PSOs:

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-II / Core Elective –II (EC)	ADHOC AND SENSOR NETWORKS	Course Code: PGXE2
Instruction Hours: 4	Credits: 3	Exam Hours: 3
Internal Marks : 25	External Marks:75	Total Marks: 100

Knowledge	K1-Acquire / Remember	
Level	K2-Understanding	
	K3-Apply	
	K4-Analyze	
	K5-Evaluate	
	K6-Create	
Course	• Understands the fundamentals of ADHOC network protocols and standards.	
Objectives	• Applies and analyze the different approaches and routing strategies on AdHoc Protocols.	
	• Understands and comprehends the wireless networking protocols.	
	• Evaluates the Sensor networking management schemes.	
	Comprehends the security techniques with various ADHOC and Sensor Networks	
UNIT	CONTENT	HOURS
Ι	ADHOC NETWORKS	12
	Fundamentals Of WLANs - IEEE 802.11 Architecture - Self Configuration and Auto	
	Configuration - Issues in Ad - Hoc Wireless Networks - MAC Protocols for Ad -	
	Hoc Wireless Networks - Contention Based Protocols - TCP Over Ad - Hoc Networks	
	- TCP Protocol Overview - TCP and MANETs - Solutions for TCP Over Ad - Hoc	
	Networks.	
II	ADHOC NETWORK ROUTING AND MANAGEMENT : Routing in Ad -	12
	Hoc Networks - Introduction - Topology based versus Position based Approaches -	
	Proactive Routing – DSDV, WRP, TBRPF Reactive Routing – DSR,AODV, Hybrid	
	Routing Approach ZRP, CBRP - Location services - DREAM - Quorums based	
	Location Service – Forwarding Strategies – Greedy Packet Forwarding, LAR.	
III	SENSOR NETWORK COMMUNICATION PROTOCOLS : Introduction -	12
	Architecture- Single Node Architecture - Sensor Network Design Considerations -	
	Energy Efficient DesignPrinciples for WSN"s – Protocols for WSN –	

	Physical Layer- Transceiver Design Considerations – MAC Protocols for							
	Wireless Sensor Network - IEEE 802.15.4 Zigbee - Link Layer and Error Control							
	Issues – Routing Protocols – Gossiping and agent based unicast forwarding, Energy							
	efficient unicast – Transport Protocols &QoS – Congestion Control Issues – Application							
	specific Support – Target Detection and Tracking.							
IV	SENSOR NETWORK MANAGEMENT AND PROGRAMMING :Sensor	12						
	Management-Topology Control Protocols and Sensing Mode Selection Protocols -							
	Time Synchronization – Localization and Positioning – Operating Systems and Sensor							
	Network Programming – Sensor Network Simulators.							
V	ADHOC AND SENSOR NETWORK SECURITY : Security in Ad – Hoc and Senso	12						
	Networks - Key Distribution and Management - Software based Anti - tampe							
	Techniques – Water Marking techniques – Defense against Routing Attacks – Secure A							
	Hoc Routing Protocols – Broadcast Authentication WSN Protocols – TESLA – Biba							
	Sensor Network Security Protocols – SPINS.							
VI	Contemporary Issues: Expert lectures, online seminars – webinars.	-						

Carlos De Morais Cordeiro, Dharma Prakash Agrawal, "Ad Hoc and Sensor Networks: Theory and Applications", Second Edition, World Scientific Publishing, 2011.

Reference Book:

- 1. Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks Theory and Practice", John Wiley and Sons, 2010.
- Amiya Nayak, Ivan Stojmenovic,, "Wireless Sensor and Actuator Networks : Algorithm and Protocols for Scalable Coordination and Data communication", John Wiley & Sons 2010
- 3. C.Siva Ram Murthy and B.S.Manoj, "Ad Hoc Wireless Networks Architectures and Protocols", Pearson Education, 2011.
- 4. C.K.Toh, "Ad Hoc Mobile Wireless Networks", Pearson Education, 2007
- ErdalÇayırcı, ChunmingRong, "Security in Wireless Ad Hoc and Sensor Networks", John Wiley and Sons, 2009.

On completion of the Course, Students should be able to do

CO1: To understand the basics of AdHoc & Sensor Networks.

CO2: To learn various fundamental and emerging protocols of alllayers in AdHoc Network.

CO3: To study about the issues pertaining to major obstacles in establishment and efficient management of AdHoc andSensor Networks.

CO4: To understand the nature and applications of AdHoc and SensorNetworks.

CO5: To understand various security practices and protocols of AdHoc and Sensor Networks and

to build sensor networks in various fields.

Mapping of COs with POs & PSOs:

CO/PO	РО				PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	М	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	М	S	S	S	S	S
CO5	М	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-II /	COMPILER DESIGN	Course Code: PGXE3
Core Elective –III (EC)		
Instruction Hours: 4	Credits: 3	Exam Hours: 3
Internal Marks : 25	External Marks:75	Total Marks: 100

Knowledge	K1-Acquire / Remember						
Level	K2-Understanding						
	K3-Apply						
	K4-Analyze						
	K5-Evaluate						
	K6-Create						
Course	• To introduce the major concept areas of language translation and compiler design.						
Objectives	• To enrich the knowledge in various phases of compiler ant its use, code	optimization					
	techniques, machine code generation, and use of symbol table.						
	• To extend the knowledge of parser by parsing LL parser and LR parser.						
	• To provide practical programming skills necessary for constructing a compi	ler.					
UNIT	CONTENT	HOURS					
Ι	INTRODUCTION: Different Phases of Compiler - Finite State Automation	12					
	and Lexical analysis - A Simple Approach to the Design of Lexical Analyzers						
	- Regular Expressions - A Language for SpecifyingLexical Analyzers.						
II	SYNTAX SPECIFICATION: Context Free Grammars - Parsers – Derivation	12					
	and Parse trees - Shift Reduce Parsing - Operator Precedence Parsing - Top-						
	Down Parsing - Predictive Parsers.						
III	CODE GENERATION :Intermediate Code Generation - Translation -	12					
	Implementation of Syntax - DirectedTranslators - Intermediate Code - Postfix						
	Notation - Parse Trees and Syntax Trees - Three Address Codes, Quadruples						
	and Triples.						
IV	SYMBOL TABLES: Contents of a Symbol Table - Data Structures for	12					
	Symbol Tables - Implementation of a Simple Stack Allocation Scheme -						
	Implementation of Block Structured Languages - Storage Allocation in						

	Block Structured Languages - Errors - Lexical Phase Error.	
V	CODE OPTIMIZATION AND CODE GENERATION: Elementary Code	
	Optimization technique - Loop Optimization - DAG Representation of Basic	
	Blocks - Value Numbers and Algebraic Laws - Object Programs - Problems	12
	in Code Generation - A Machine Model - A Simple Code Generator.	
VI	Contemporary Issues: Expert lectures, online seminars – webinars.	2 Hours

1. Alfred V. Aho, Jeffery D.Ullman, "Principles of Compiler Design", Narosa, New Delhi, 2002.

(Ch:1.1-1.11,3.1-3.7,4.1,4.2,5.1-5.5,7.1-7.6,9.1,9.2,10.1, 10.2,11.1,11.2,12.1-2.4,15.1-15.4)

Reference Book

- Dick Grune, Henri E. Bal, CerielJ.H.Jacobs, Koen G. Langondeon, "Modern Compiler Design", Wiley, Singapore, 2003.
- 2. Louden K., "Compiler Construction, Principles and Practice", Thomson, New Delhi, 2003.

Web-Resources

https://www.geeksforgeeks.org/last-minute-notes-compiler-design-gq/ https://www.tutorialspoint.com/compiler_design/compiler_design_tutorial.pdf https://nptel.ac.in/downloads/106108113/
Course Outcomes:

On completion of the Course, Students should be able to do

CO1: Able to identify and understand different phases and passes of compiler and their functioning.

CO2: Able to understand the concept of syntax analysis and to solve the problems of predictive parsing.

CO3: Able to differentiate between top down and bottom up parsing and understand syntax directed translation techniques.

CO4: Able to apply code optimization and code generation techniques.

CO5: To learn & use the new tools and technologies used for designing a compiler.

Mapping of	COs	with	POs	&	PSOs:
------------	-----	------	-----	---	--------------

CO/PO	РО							PSO		
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	М	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	М	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-II /	MANET	Course Code: PGXE3
Core Elective –III (EC)		
Instruction Hours: 4	Credits: 3	Exam Hours: 3
Internal Marks : 25	External Marks:75	Total Marks: 100

Knowledge	K1-Acquire / Remember	
Level	K2-Understanding	
	K3-Apply	
	K4-Analyze	
	K5-Evaluate	
Course	• This course sime to build concents recording the fundamental print	noiplas of
Objectives	• This course and to build concepts regarding the fundamental prin	icipies of
o sjeen ves	distributedsystems.	
	• The design issues and distributed operating system concepts are covered.	
	• To analyze the various design issues and challenges in the layered archi	itecture of
	Ad hocwireless networks.	
	• It starts with characteristics features, applications of ad hoc	networks,
	Modulationtechniques and voice coding.	
	• It also covers the IEEE 802.11 Wireless LAN and Bluetooth standards.	
UNIT	CONTENT	HOURS
UNIT I	CONTENT INTRODUCTION: Introduction to adhoc networks – definition,	HOURS 12
UNIT I	CONTENT INTRODUCTION: Introduction to adhoc networks – definition, characteristics features, applications. Characteristics of Wireless channel,	HOURS 12
UNIT I	CONTENT INTRODUCTION: Introduction to adhoc networks – definition, characteristics features, applications. Characteristics of Wireless channel, Adhoc Mobility Models:- Indoor and outdoor models. Ad hoc Wireless	HOURS 12
UNIT I	CONTENT INTRODUCTION: Introduction to adhoc networks – definition, characteristics features, applications. Characteristics of Wireless channel, Adhoc Mobility Models:- Indoor and outdoor models. Ad hoc Wireless Networks – What is an Ad Hoc Network? Heterogeneity in Mobile Devices	HOURS 12
UNIT I	CONTENT INTRODUCTION: Introduction to adhoc networks – definition, characteristics features, applications. Characteristics of Wireless channel, Adhoc Mobility Models:- Indoor and outdoor models. Ad hoc Wireless Networks – What is an Ad Hoc Network? Heterogeneity in Mobile Devices – Wireless Sensor Networks – Traffic Profiles – Types of Ad hoc Mobile	HOURS 12
UNIT I	CONTENT INTRODUCTION: Introduction to adhoc networks – definition, characteristics features, applications. Characteristics of Wireless channel, Adhoc Mobility Models:- Indoor and outdoor models. Ad hoc Wireless Networks – What is an Ad Hoc Network? Heterogeneity in Mobile Devices – Wireless Sensor Networks – Traffic Profiles – Types of Ad hoc Mobile Communications – Types of Mobile Host Movements – Challenges Facing	HOURS 12
UNIT I	CONTENT INTRODUCTION: Introduction to adhoc networks – definition, characteristics features, applications. Characteristics of Wireless channel, Adhoc Mobility Models:- Indoor and outdoor models. Ad hoc Wireless Networks – What is an Ad Hoc Network? Heterogeneity in Mobile Devices – Wireless Sensor Networks – Traffic Profiles – Types of Ad hoc Mobile Communications – Types of Mobile Host Movements – Challenges Facing Ad hoc Mobile Networks – Ad hoc wireless Internet.	HOURS 12
UNIT I II	CONTENT INTRODUCTION: Introduction to adhoc networks – definition, characteristics features, applications. Characteristics of Wireless channel, Adhoc Mobility Models:- Indoor and outdoor models. Ad hoc Wireless Networks – What is an Ad Hoc Network? Heterogeneity in Mobile Devices – Wireless Sensor Networks – Traffic Profiles – Types of Ad hoc Mobile Communications – Types of Mobile Host Movements – Challenges Facing Ad hoc Mobile Networks – Ad hoc wireless Internet. AD HOC ROUTING PROTOCOLS :Introduction – Issues in	HOURS 12 12
UNIT I II	CONTENT INTRODUCTION: Introduction to adhoc networks – definition, characteristics features, applications. Characteristics of Wireless channel, Adhoc Mobility Models:- Indoor and outdoor models. Ad hoc Wireless Networks – What is an Ad Hoc Network? Heterogeneity in Mobile Devices – Wireless Sensor Networks – Traffic Profiles – Types of Ad hoc Mobile Communications – Types of Mobile Host Movements – Challenges Facing Ad hoc Mobile Networks – Ad hoc wireless Internet. AD HOC ROUTING PROTOCOLS :Introduction – Issues in Designing a Routing Protocol for Ad Hoc Wireless Networks –	HOURS 12 12
UNIT I	CONTENTINTRODUCTION: Introduction to adhoc networks – definition,characteristics features, applications. Characteristics of Wireless channel,Adhoc Mobility Models:- Indoor and outdoor models. Ad hoc WirelessNetworks – What is an Ad Hoc Network? Heterogeneity in Mobile Devices– Wireless Sensor Networks – Traffic Profiles – Types of Ad hoc MobileCommunications – Types of Mobile Host Movements – Challenges FacingAd hoc Mobile Networks – Ad hoc wireless Internet.AD HOC ROUTING PROTOCOLS :Introduction – Issues inDesigning a Routing Protocol for Ad Hoc Wireless Networks –Classifications of Routing Protocols – Table–Driven Routing Protocols –	HOURS 12 12
UNIT I	CONTENT INTRODUCTION: Introduction to adhoc networks – definition, characteristics features, applications. Characteristics of Wireless channel, Adhoc Mobility Models:- Indoor and outdoor models. Ad hoc Wireless Networks – What is an Ad Hoc Network? Heterogeneity in Mobile Devices – Wireless Sensor Networks – Traffic Profiles – Types of Ad hoc Mobile Communications – Types of Mobile Host Movements – Challenges Facing Ad hoc Mobile Networks – Ad hoc wireless Internet. AD HOC ROUTING PROTOCOLS :Introduction – Issues in Designing a Routing Protocol for Ad Hoc Wireless Networks – Classifications of Routing Protocols – Table–Driven Routing Protocols – Destination Sequenced Distance Vector (DSDV) – Wireless Routing	HOURS 12 12

	Protocol (WRP) - Cluster Switch Gateway Routing (CSGR) - Source-	
	Initiated On-Demand Approaches - Ad hoc On-Demand Distance Vector	
	Routing (AODV) – Dynamic Source Routing (DSR) –Temporally Ordered	
	Routing Algorithm (TORA) - Signal Stability Routing (SSR) -Location-	
	Aided Routing (LAR) - Power-Aware Routing (PAR) - Zone Routing	
	Protocol (ZRP).	
III	MULTICASTROUTING IN ADHOC NETWORKS : Introduction –	12
	Issues in Designing a Multicast Routing Protocol – Operation of Multicast	
	Routing Protocols - An Architecture Reference Model for Multicast	
	Routing Protocols - Classifications of Multicast Routing Protocols - Tree-	
	Based Multicast Routing Protocols- Mesh-Based Multicast Routing	
	Protocols – Summary of Tree and Mesh based Protocols – Energy–Efficient	
	Multicasting – Multicasting with Quality of Service Guarantees –	
	Application-Dependent Multicast Routing - Comparisons of Multicast	
	Routing Protocols.	
IV	END-END DELIVERY AND SECURITY Transport layer : Issues	12
	in designing- Transport layer classification, adhoc transport protocols.	
	Security issues in adhoc networks: issues and challenges, network security	
	attacks, secure routing protocols.	
V	CROSS LAYER DESIGN AND INTEGRATION OF ADHOC FOR	12
	4G Cross layer Design: Need for cross layer design, cross layer	
	optimization, parameter optimization techniques, Cross layer cautionary	
	prespective. Intergration of adhoc with MobileIP networks.	
VI	Contemporary Issues: Expert lectures, online seminars – webinars.	-

- 1. C.Siva Ram Murthy and B.S.Manoj, Ad hoc Wireless Networks Architectures and protocols,2nd edition, Pearson Education. 2007.
- 2. Charles E. Perkins, Ad hoc Networking, Addison Wesley, 2000

Reference Book:

- 1. Stefano Basagni, Marco Conti, Silvia Giordano and Ivan stojmenovic, Mobile ad hocnetworking, Wiley-IEEE press, 2004.
- 2. Mohammad Ilyas, The handbook of adhoc wireless networks, CRC press, 2002.

Web-Resources:

http://www.olsr.org/docs/wos3-olsr.pdf http://www.it.iitb.ac.in/~sri/talks/manet.pdf http://cwi.unik.no/images/Manet_Overview.pdf

Course Outcomes:

On completion of the Course, Students should be able to do

CO1: Appraise the importance of Adhoc networks such as MANET and VANET and WirelessSensor networks.

CO2: Understand design considerations for wireless networks.

CO3: Explain the design considerations for deploying the wireless network infrastructure.

CO4: Compare the differences between cellular and ad hoc networks and the analyse the challenges at various layers and applications

CO5: Summarize the protocols used at the MAC layer and scheduling mechanisms.

Mapping of COs with POs & PSOs:

CO/PO	РО						PO PSO			
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	М	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	М	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-II /	SOFTWARE PROJECT	Course Code: PGXE3
Core Elective –III (EC)	MANAGEMENT	
Instruction Hours: 4	Credits: 3	Exam Hours: 3
Internal Marks : 25	External Marks:75	Total Marks: 100

Knowledge	K1-Acquire / Remember	
Level	K2-Understanding	
	K3-Apply	
	K4-Analyze	
	K5-Evaluate	
Comme	K6-Create	1
Course	• Introducing the primary important concepts of project management relat	ed to managing
Objectives	software development projects.	
	• They will also get familiar with the different activities involved in S	oftware Project
	Management.	
	• Further, they will also come to know how to successfully plan an	d implement a
	software project management activity, and to complete a specific proje	ect in time with
	the available budget.	
UNIT	CONTENT	HOURS
Ι	Introduction to Software Project Management: Introduction – Why	12
	is SPM important? - Project- Software projects Vs other types of project -	
	Contract and technical project managementActivities - plan, methods and	
	methodologies categorizing software projects- stakeholders- setting	
	objectives- Business case – project success and failures- Management.	
	Project Evaluation and Programme Management: Introduction – Business	
	case – Project portfolio management – Evaluation of individual projects –	
	cost benefit evaluation techniques – risk evaluation – Programme	
	management – Managing the allocation of resources – Strategic	
	programme management – Creating a programme and aids – benefits	
	management	
т		
11	Overview Of Project Planning: Introduction - Step wise Project	12
	Overview Of Project Planning: Introduction - Step wise Project	12

	Introduction - Build or buy Choosing methodologies and technologies -	
	Software processes and models - choice of process models - structure Vs	
	speed of delivery – waterfall model – spiral model – software prototyping –	
	Rapid application development – Agile methods- Extreme programming.	
III	Software Effort Estimation: Introduction- Where are estimates	12
	done? - Problems with over and under estimates - Basis for estimating	
	and its techniques – Bottom up estimating – Top	
	down approach and parametric models - Expert Judgment - Estimating	
	by analogy - Function Point Analysis - FP mark II - COSMIC full	
	FPCOCOMO II - Cost estimation and staffing patterns. Activity	
	Planning: Introduction- objectives - When to plan? - Project schedules -	
	Projects and Activities - Network Planning Models - Sequencing and	
	Scheduling Activities - Formulating a Network Model - Adding the	
	Time Dimension - Forward and Backward Pass - Critical Path- Activity	
	Float – Shortening the Project Duration – Critical Activities – Activity on	
	Arrow Networks.	
IV	Risk Management: Introduction – Risk – Categories of risk – A	12
	framework for dealing with risk – Risk Identification – Risk assessment – Risk Planning – Risk Management – Evaluating risks to schedule –	
	Applying the PERT Technique – MonteCarlo Simulation –Critical Chain	
	Concepts. Resource allocation : Introduction - Nature of resources -	
	Identifying Resource Requirements- Scheduling – Creating Critical Path	
	schedule - Cost Schedules – Scheduling sequence	
V	Monitoring and Control: Introduction – Creating the framework –	12
	collecting the data – Review – Software Configuration Management.	
	Managing Contracts: Introduction- Types of contracts – Contract	
	Management - Managing people in software environments.	
VI	Contemporary Issues: Expert lectures, online seminars –	
	webinars.	-

"Software project management" - Bob Hughes, Mike Cotterell and Rajib Mall - Fifth Edition.

Unit I: Chapter 1, 2 Unit II: Chapter 3, 4 Unit III: Chapter 5, 6 Unit IV: Chapter 7, 8 Unit V: Chapter 9, 10, 11

Reference Book

"Software Project Management" - Walker Royce - Pearson Education

Web-Resources:s

https://mrcet.com/downloads/digital_notes/CSE/IV%20Year/SOFTWARE%20PROJECT%2 OM_ANAGEMENT.pdf https://www.smartzworld.com/downloads/download/spm-complete-pdf-notes/ https://www.srividyaengg.ac.in/coursematerial/CSE/104831.pdf https://vemu.org/uploads/lecture_notes/20_12_2019_1305961524.pdf https://ocw.mit.edu/courses/engineering-systems-division/esd-36-system-projectmanagement-_fall-2012/lecture-notes/

Course Outcomes:

On completion of the Course, Students should be able to do

CO1: Identify the different project contexts and suggest an appropriate management strategy.

CO2: Practice the role of professional ethics in successful software development.

CO3: Identify and describe the key phases of project management.

CO4: Determine an appropriate project management approach through an evaluation of the

business context and scope of the project.

Mapping of COs with POs & PSOs:

СО/РО	РО							PSO)	
	1	2	3	4	5	1	2	3	4	5
CO1	S	М	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	М	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-III /	EMBEDDED SYSTEM	Course Code: PGXE4
Core Elective –IV (EC)		
Instruction Hours: 5	Credits: 4	Exam Hours: 3
Internal Marks : 25	External Marks:75	Total Marks: 100

Knowledge	K1-Acquire / Remember	
Level	K2-Understanding	
	K3-Apply	
	K4-Analyze	
	K5-Evaluate	
	K6-Create	
Course	• To provide fundamental concept of Embedded systems and real time	operating
Objectives	evetame	
	systems.	
	• The concepts and architecture of embedded systems	
	Basic of microcontroller 8051	
	• The concepts of microcontroller interface	
	• The concepts of ARM architecture	
	• The concepts of realtime operating system	
	• Different design platforms used for an embedded systems application	
UNIT	CONTENT	HOURS
Ι	INTRODUCTION TO EMBEDDED SYSTEMS:Processor in the system –	15
	software embedded into a system – structural units in a processor – processor,	
	memory selection, Memory devices - Allocation of memory to program	
	comparts and blocks and mamory man of a system	
	segments and blocks and memory map of a system.	
II	DEVICE DRIVERS : Interrupt servicing mechanisms - context and periods	
	for context systeming. Decomposing concerts and Embedded recomposing in	
	for context switching -riogramming concepts and Embedded programming in	
	C and C++: Software programming in ALP and in high level language 'C' –	15
	'C' program elements: Header source files and preprocessor directives –	
	e program elemento. Houser source mes une preprocessor directives	
	Macros and functions: Data types – data structures – modifiers – statements –	

	loops and pointers – Embedded programming in C++ and Java.	
III	PROGRAM MODELING CONCEPTS :Program modeling concepts in single and multiprocessor systems – software – development process: modeling process for software analysis – programming model for event controlled or response time constrained real time program- modeling of multiprocessor systems. Multiple processes – sharing data by multiple tasks and routines – inter process communications.	15
IV	REAL TIME OPERATING SYSTEMS :OS services – IO sub systems – Real time and embedded operating systems – Interrupt routines in RTOS environment – RTOS task scheduling models, Interrupt latency and response times of the task as performance metrics – performance metrics in scheduling models.	15
V	HARDWARE SOFTWARE CODE DESIGN :Embedded system project management – Embedded system design and Co-design Issues –Design Cycle – uses of target system – use of software tools for development – use of scopes and logic analysers for system hardware tests – issues in embedded system design.	15
VI	Contemporary Issues: Expert lectures, online seminars – webinars.	-

Embedded systems - Architecture, Programming and Design By Raj Kamal - TMH, 2007

Reference Book:

Mohamed Ali Maszidi & Janice Gillispie Maszidi, "The 8051 Microcontroller and EmbeddedSystem", Pearson Publishers

Web-Resources:

https://www.iitg.ac.in/pbhaduri/cs52213/Introduction%20to%20Embedded%20Systems%20(ver %200.5,%20Aug%202010).pdf https://drive.google.com/file/d/1n_wu9rjUyR-mzjhPuH4O67undtRTFeup/view EE6602-SCAD-MSM- By EasyEngineering.net

Course Outcomes:

- On completion of the Course, Students should be able to do
- CO1: Learn fundamentals of designing embedded systems.
- CO2: Different design platforms used for an embedded systems application.
- CO3: Explain the embedded system concepts and architecture of embedded systems.
- CO4: The concepts and architecture of embedded systems.

Mapping of COs with POs & PSOs:

CO/PO	РО				PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-III /	SECURITY IN COMPUTING	Course Code: PGXE4
Core Elective –IV (EC)		
Instruction Hours: 5	Credits: 4	Exam Hours: 3
Internal Marks : 25	External Marks:75	Total Marks: 100

Knowledge Level Course Objectives	 K1-Acquire / Remember K2-Understanding K3-Apply K4-Analyze K5-Evaluate K6-Create To learn the importance of evidence handling and storage for variou Explain the methodology of incident response and various security is world, and identify digital forensic tools for data collection. 	s devices. issues in ICT
	• This course focuses on the models, tools, and techniques for en- security with some emphasis on the use of cryptography.	forcement of
	 Students will learn security from multiple perspectives. 	
UNIT	CONTENT	HOURS
Ι	SECURITY PROBLEM IN COMPUTING :Protecting variables - Characteristics of computer intrusion - Attacks - Security goals - Vulnerabilities- Computer criminals - methods of defense- Elements of cryptography : Terminology and background - Substitution ciphers - Transpositions – Encryption algorithms - Data encryption standard - AES encrypt ion algorithm - uses of encryption	15
Π	PROGRAM SECURITY :Secure program - Non Malicious program errors – Virus and other malicious code - controls against program threads Protection in general purpose operating system: protected objects and methods of protection - Memory and address protection - control of access to general objects - file protection mechanism -user authentications	15

III	DESIGNING TRUSTED OPERATING SYSTEM :Security policy - Models of security - Trusted OS Design - Assurance in trusted OS -	15
	implementation – Database security	
IV	SECURITY IN NETWORKS :NT concepts - Threads in NT - Network Security controls - firewalls - Intrusion detection system - Secure Email- Administering security: Security planning - Risk analysis - Organisation security policies - Physical security	15
V	LEGAL, PRIVACY AND ETHICAL ISSUES IN COMPUTER SECURITY :Protecting programs and data - Information of Computer objects -Rights of employees and Employeers- Software failure - Computer crime - Privacy - Ethical issues in Computer Security- Cryptography: Mathematics for Cryptography - Symmetric encryption - Public key encryption system – Quantum Cryptographic results.	15
VI	Contemporary Issues: Expert lectures, online seminars – webinars.	-

Charles P.Pfleeger and Shari Lawrence Pfleeger, "Security in Computing", Second Edition, Pearson Education (Singapore) Pvt. Ltd, 2004.

Reference Book:

- Eric Maiwald, "Network Security a Beginner's Guide", Second Edition, Tata-Mcgraw Hill Publication Ltd., New Delhi, 2003.
- AtulKahate, "Cryptography and Network Security", Tata-Mcgraw Hill Publication Ltd., New Delhi, 2003

Web-Resources:

https://www.cs.vu.nl/~ast/CN5/#Auth http://williamstallings.com/ComputerSecurity/ https://www.nap.edu/read/1581/chapter/4

Course Outcomes

On completion of the Course, Students should be able to do

- CO1: Identify some of the factors driving the need for network security
- CO2: Identify and classify particular examples of attacks
- CO3: Define the terms vulnerability, threat and attack
- CO4: Identify physical points of vulnerability in simple networks
- CO5: Compare and contrast symmetric and asymmetric encryption systems and their
- vulnerability to attack, and explain the characteristics of hybrid systems.

Mapping of COs with POs & PSOs:

CO/PO	РО							PSO		
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	М	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	М	S	S	S	S	S

- **S** Strongly Correlated
- **M** Moderately Correlated
- W-Weakly Correlated
- N No Correlation

Semester-III / Core Elective –IV (EC)	GRID COMPUTING	Course Code: PGXE4
Instruction Hours: 5	Credits: 4	Exam Hours: 3
Internal Marks : 25	External Marks:75	Total Marks: 100

Knowledge	K1-Acquire / Remember	
Level	K2-Understanding	
	K3-Apply	
	K4-Analyze	
	K5-Evaluate	
	K6-Create	
Course	• Identify the technical foundations of cloud systems architectures.	
Objectives		
	• Analyze the problems and solutions to cloud application problems.	
	 Apply principles of best practice in cloud application design and man 	agement.
	• Identify and define technical challenges for cloud applications and	assess their
	importance.	
UNIT	CONTENT	HOURS
Ι	Introduction: Early and Current Grid Activities – An	15
	Overview of Grid Business Areas – Applications – Infrastructure.	
	Grid Computing Organization and their Roles: Standards and	
	Guidelines – Tool Kids and Framework – Grid-Based Solution to	
	Solve Computing, Data and Network Requirements.	
II	The Grid Computing Anatomy: The Grid Problem – Concept	
	of Virtual Organizations Architecture The Grid Computing Pood	
	of virtual Organizations – Architecture. The Orid Computing Road	
	Map: Autonomic Computing – Business on Demand and	15
	Infrastructure Virtualization – Service oriented Architecture and Grid	
	– Semantic Grid.	
III	Merging Grid Services Architecture with the Web Services	1.5
	Architecture: Service-Oriented Architecture – Web Service	15

	Architecture – XML, Related Technologies –XML Messages and Enveloping – Service Message Description Mechanisms – Relationship between Web Service and Grid Service – Open Grid Services Architecture (OGSA): Architecture.	
IV	OGSA Use Cases: Commercial Data Center – National Fusion Collaboratory –Online Media and Entertainment - OGSA Platform Components – OGSI: Grid Services – Specification – Service Data Concepts – Naming and Change Management Recommendations.	15
V	OGSA Basic Services: Common Management Model – Service Domains – Policy Architecture – Security Architecture – Metering and Accounting – Common Distributed Logging - Distributed Data Access and Replication.	15
VI	Contemporary Issues: Expert lectures, online seminars – webinars.	-

"Grid Computing ", Joshy Joseph and Craig Fellenstein, Pearson Education, 2005.

Reference Books :

"Grid Computing "S. Jaya Krishna, ICFAI University Press, 2006.

Web-Resources:

https://www.imsc.res.in/~kabru/parapp/Grid-2004-workshop/presentations/day1-au-cdacintro.pdf

https://www.vidyarthiplus.com/vp/Thread-CS2063-Grid-Computing-Lecture-Notes http://www.cs.kent.edu/~farrell/grid06/lectures/index.html

Course Outcomes:

On completion of the Course, Students should be able to do

CO1: Understand the importance of virtualization in distributed computing and how this

has enabled the development of Cloud Computing.

CO2: Analyze the performance of Cloud Computing.

CO3: Understand the concept of Cloud Security.

CO4: Learn the Concept of Cloud Infrastructure Model.

Mapping of COs with POs & PSOs:

CO/PO	РО							PSO		
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	М	S	S	S	S	S	S	S	S
CO4	S	S	S	S	М	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-III /	INTERNET OF THINGS	Course Code: PGXE5
Core Elective –V (EC)		
Instruction Hours: 5	Credits: 4	Exam Hours: 3
Internal Marks : 25	External Marks:75	Total Marks: 100

Knowledge	K1-Acquire / Remember	
Level	K2-Understanding	
	K3-Apply	
	K4-Analyze	
	K5-Evaluate	
	K6-Create	
Course	• To assess the vision and introduction of IoT.	
Objectives	• To Understand IoT Market perspective.	
	• To Implement Data and Knowledge Management and use of Devi	ces in IoT
	Technology.	
	• To Understand State of the Art - IoT Architecture.	
	• To classify Real World IoT Design Constraints, Industrial Automatio	n in IoT.
UNIT	CONTENT	HOURS
Ι	INTRODUCTION TO INTERNET OF THINGS Introduction	15
	- Physical design of IoT – Logical design of IoT – IoT Enabling	
	Technologies – IoT levels & Deployment technologies.	
	DEMYSTIFYING THE IOT PARADIGM: The Emerging IoT	
	flavors-The Industrial Internet of Things - Consumer Internet of	
	Things - Social Internet of things - Semantics for The Interoperable	
	IoT- Cognitive IoT.	
II	REALIZATION OF IoT ECOSYSTEM USING WIRELESS	15
	TECHNOLOGIES: Introduction- Architecture for IoT Using Mobile	
	Devices- Mobile Technologies for Supporting IoT Ecosystem-	
	Mobile Use Cases for IoT - Low Power Wide Area Networking	
	Topologies – Sigfox- Weightless – Nwave- Ingenu- Lora.	

III	INFRASTRUCTURE AND SERVICE DISCOVERY	15								
	PROTOCOLS FOR THE IOT ECOSYSTEM: Introduction- Layered									
	Architecture for IoT - Protocol Architecture of IoT - Infrastructure									
	Protocols-Device or Service Discovery for IoT - Protocols for IoT									
	service Discovery.									
	INTEGRATION TECHNOLOGIES AND TOOLS FOR IOT									
	ENVIRONMENTS: Sensor and actuator networks.									
IV	IOT AND M2M :INTRODUCTION – M2M – Difference	15								
	Between IoT and M2M – SDN and NFV for IoT. DEVELOPING IOT:									
	IoT Design Methodology.									
V	SECURITY MANAGEMENT OF AN IOT ECOSYSTEM	15								
	Introduction- Security Requirements of an IOT Infrastructure-									
	Authentication - Authorization And Audit Trail (AAA) Framework-									
	Defense In Depth-Security Concerns of Cloud Platforms-Security									
	Threats of Big Data –Security Threats In Smartphones-Security									
	Solutions For Mobile Devices-Security Concerns In IoT Components-									
	Security Measures for IoT Platforms/Devices.									
VI	Contemporary Issues: Expert lectures, online seminars – webinars.	-								

- 1. Pethuru Raj and Anupama C. Raman, "The Internet of Things Enabling Technologies, Platforms, and Use Cases", Taylor & Francis, CRC Press, 1st Edition, 2017.
- Arshdeep Bahga, Vijay Madisetti, "Internet of Things, A Hands-On Approach", Universities Press (INDIA) Private Limited, 1st Edition, 2015.

Reference Books

Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, Stamatis Karnouskos, David Boyle, "From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence", 1st Edition, Academic Press, 2014.

Web Resources:

https://lecturenotes.in/notes/21082-note-for-internet-of-things-iot-by-srikant-vas https://ocw.cs.pub.ro/courses/iot/courses/01 https://nptel.ac.in/courses/106105166/ http://www.cs.ust.hk/~qianzh/FYTGS5100/spr2013/notes/Chapter1-IoT.pdf

Course Outcomes:

On completion of the Course, Students should be able to do

CO1: Understand the Architectural Overview of IoT.

CO2: Realize the concepts of IoT using Wireless Technologies.

CO3: Understand the various IoT Protocols.

CO4: Impart the knowledge on the devices of IoT.

CO5: Comprehend the idea of M2M, and Learn the IoT security in various domains

Mapping of COs with POs & PSOs:

CO/PO	РО						CO/PO PO							PSO		
	1	2	3	4	5	1	2	3	4	5						
CO1	S	S	S	S	S	S	S	S	S	S						
CO2	S	S	S	S	S	S	S	S	S	S						
CO3	S	S	S	S	S	S	S	S	S	S						
CO4	S	S	S	S	S	S	S	S	S	S						
CO5	S	S	S	S	S	S	S	S	S	S						

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-III /	HUMAN COMPUTER INTERACTION	Course Code: PGXE5
Core Elective –V (EC)		
Instruction Hours: 5	Credits: 4	Exam Hours: 3
Internal Marks : 25	External Marks:75	Total Marks: 100

Knowledge	K1-Acquire / Remember	
Level	K2-Understanding	
	K3-Apply	
	K4-Analyze	
	K5-Evaluate	
	K6-Create	
Course Objectives	 Provide an overview of the concepts relating to the design of hum interfaces in ways making computer-based systems comprehensive, usable. Understand, the theoretical dimensions of human factors investigated. 	nan-computer friendly and
	Orderstand the theoretical dimensions of numan factors invo acceptance of computer interfaces.	Sived in the
	• Understand the important aspects of implementation of hur interfaces.	nan-computer
	• Identify the various tools and techniques for interface analysis, evaluation.	design, and
	• Identify the impact of usable interfaces in the acceptance and utilization of information systems.	performance
UNIT	CONTENT	HOURS
Ι	The Interaction: Introduction – Models of interaction – Frameworks	15
	and HCI Ergonomics- Interaction styles - Elements of the WIMP	
	interface – Interactivity – The context of the interactions.	
	Paradigms : Introduction – Paradigms for interaction.	
II	Interaction, Design basics: Introduction – What is design? –	15
	User focus - Scenarios - Navigation design - Screen design and	
	layout - Interaction and prototyping. HCL in the Software Process :	
	Introduction - The software lifecycle - Usability engineering -	
	interactive design and prototyping – Design rationate.	
III	Design Rules: Introduction – Principles to support usability –	15
	Standards – Guidelines – Golden rules and heuristics – HCI patterns.	

	Implementation Support : Introduction - Elements of windowing	
	systems – Programming the application Using toolkits – User interface	
	management systems.	
IV	Evaluation Techniques: What is evaluation – Goals of evaluation	15
	- Evaluation through expert analysis - Evaluation through user	
	participation - Choosing an evaluation method. Universal Design :	
	Introduction – Universal design principles – Multi-modal interaction –	
	Designing for diversity – Summary.	
V	User Support: Introduction Requirements of user support –	15
	Approaches to; user support - Adaptive help systems designing user	
	support systems.	
VI	Contemporary Issues: Expert lectures, online seminars -	
	webinars.	-

Human - Computer Interaction, Third Edition, "Alan Dix, Janet Finlay, Gregory D. Abowd and Russell Beale", Pearson Education, 2004.

Reference Books

Human – Computer Interaction in the New Millennium, "John C. Carroll", Pearson Education"2002.

Web-Resources:

https://www.iare.ac.in/sites/default/files/lecture_notes/HCI%20LECTURE%20NOTES.pdf http://www.cs.bham.ac.uk/~rxb/Teaching/SSC%20HCI%202008-9/HCIlecturenotes.pdf

Course Outcomes:

On completion of the Course, Students should be able to do

- CO1: To stress the importance of good interface design
- CO2: To predict good features of interface designs.
- CO3: To evaluate designs based on theoretical frameworks and methodological approaches.
- CO4: To identify and criticize bad features of interface designs.
- CO5: To learn the techniques for prototyping and evaluating user experiences.

Mapping of COs with POs & PSOs:

CO/PO	РО						PSO			
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	М	S	S	S	S	S	S	S	S
CO4	S	S	S	S	М	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

- **S** Strongly Correlated
- **M** Moderately Correlated
- W-Weakly Correlated
- **N No Correlation**

Semester-III /	WEB SERVICES	Course Code: PGXE5
Core Elective –V (EC)		
Instruction Hours: 5	Credits: 4	Exam Hours: 3
Internal Marks : 25	External Marks:75	Total Marks: 100

Knowledge	K1-Acquire / Remember	
Level	K2-Understanding	
	K3-Apply	
	K4-Analyze	
	K5-Evaluate	
	K6-Create	
Course	• To Understand Web Services and implementation model for SOA	
Objectives	• To Understand the SOA, its Principles and Benefits	
	• To Understand XML concepts	
	• To Understand paradigms needed for testing Web Services	
	• To explore different Test Strategies for SOA-based applications	
UNIT	CONTENT	HOURS
Ι	Introduction: What are Web Services?-SOAP WSDL UDDI-Why	15
	Web Services are important?-The evolution of web applications Not	
	just another distributed computing platform- Web Services and	
	enterprises	
II	XML Fundamentals: The Lingua Franca of Web Services-XML	15
	Deserve to VML Newserve E-stick and Defeate	
	Documents-AML Namespaces Explicit and Default namespaces-	
	Inheriting namespaces and not inheriting namespaces-Attributes and	
	namespaces. XML Schema: XML Schema and namespaces-First	
	Schema-Implementing XML Schema types- The any element-	
	Inheritance-Substitution groups- Global and local type declarations-	
	Managing Schemas-Schemas and instance documents-XML schema	
	best practices.	
III	SOAP: Overview of SOAP-HTTP-XML-RPC-SOAP Protocol-	15

	Message Structure-Intermediaries-Actors-Design Patterns and Faults-	
	SOAP with Attachments.	
IV	UDDI: UDDI at glance-The UDDI Business registry-UDDI under	15
	the covers-Accessing UDDI-How UDDI is playing out.	
V	Conversations: Overview- Web Services-Web Services	
	Conversation Language-W3CL Interface components - The Bar	15
	Scenario Conversations – Relationship between WSCL and WSDL.	
VI	Contemporary Issues: Expert lectures, online seminars – webinars.	-

- 1. Sandeep Chatterjee, James Webber, "Developing Enterprise Web Services", Pearson Education, 2004.
- 2. Frank.P.Coyle, XML, Web Services and the Data Revolution, "Pearson Education, 2002.
- 3. Ramesh Nagappan, Robert Skoczylas and Rima Patel Sriganesh, "Developing Java Web Services", Willey Publishing I McGovern, et al.,
- 4. "Java Web Services Architecture", Morgan Kaufmann Publishers, 2005

Web-Resources:

https://mrcet.com/downloads/digital_notes/CSE/IV%20Year/WEB%20SERVICES%20NOT ES. pdf https://www.jbiet.edu.in/pdffls/csecoursefile2020/WS_notes_IV_CSE.pdf https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-264j-database-internetand- systems-integration-technologies-fall-2013/lecture-notesexercises/MIT1_264JF13_lect_22.pdf https://www.cl.cam.ac.uk/~ib249/teaching/Lecture1.handout.pdf

Course Outcomes

On completion of the Course, Students should be able to do

CO1: Understand the principles of SOA

CO2: Efficiently use market leading environment tools to create and consume web services

CO3: Identify and select the appropriate framework components in creation of web service solution

CO4: Apply OOP principles to creation of web service solutions

Mapping of COs with POs & PSOs:

CO/PO	РО						PO PO PSO					
	1	2	3	4	5	1	2	3	4	5		
CO1	S	S	S	S	S	S	S	S	S	S		
CO2	S	S	S	S	S	S	S	S	S	S		
CO3	S	S	S	S	S	S	S	S	S	S		
CO4	S	S	S	S	М	S	S	S	S	S		
CO5	М	S	S	S	S	S	S	S	S	S		

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated